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Principal Investigator: Lee, William M. F. 
 
Proposal Title:  Multiplex Quantitative Histologic Analysis of Human Breast Cancer  

Cell Signaling and Cell Fate 
 
Introduction 
The objective of this proposal was to build an advanced platform for immunohistological study of breast cancer 
specimens that retrieves multiplex quantitative molecular information on a cellular basis. Three components make up this 
platform: (1) Multiplex tissue immunostaining protocols for revealing structural, cell-type and analyte antigens in the 
same histologic section (the first two types of antigens are to help segment and classify cells, and the last type of antigen 
is to reveal biological processes/events and prognostic/predictive biomarkers of interest); (2) imaging by multispectral 
microscopy to capture the information revealed by individual stains in multiplex combinations; and (3) software 
(FARSIGHT) for automated multispectral image analysis that (i) segments individual nuclei and cells in images, (ii) 
classifies the segmented nuclei/cells into cell types of interest based on their association with structural/cell-type antigen 
staining and spatial/ textural features, and (iii) quantifies analyte expression on a cellular basis by associating analyte 
staining with the segmented nuclei/cells. Operation of the platform was developed using human breast cancer specimens 
with the goal of quantifying cytometrically antigen staining of known prognostic/predictive value (ER, PR, HER2) or 
reporting biological events and processes (Ki67, p-ERK, p-AKT, p-S6) relevant to molecularly targeted therapeutic 
agents. 
 
This project has been in no-cost extension for the past year. 
 
 
Task 1.  Develop robust protocols for multiplex immunostaining of human breast cancer specimens 
We have developed robust immunostaining protocols for detecting analyte antigens in paraffin-embedded human breast 
cancer specimens that report on cell signaling events (p-ERK, p-AKT, p-STAT3, p-S6), cell fate decisions (Ki-67) and 
biomarkers of prognostic and predictive value (ER, PR, HER2). Immunohistochemical (IHC) staining for these analytes 
using chromogenic substrates (DAB, diaminobenzidine) consistently yielded the highest percentage of positive tumor 
cells (with low background staining). Staining using fluorescent reporters yielded comparable results for some of the 
analytes (p-ERK, Ki-67, HER2), making immunofluorescent (IF) staining an option when studying these analytes. For 
other analytes (e.g. p-AKT, p-STAT3), however, IF staining yielded far fewer positive cells, indicating that IF was 
signficantly less sensitive than IHC for studying these analytes.  Structural and cell-type antigens (epithelial cytokeratin, 
CK, E-cadherin, HER2) used for typing segmented nuclei and cells as breast carcinoma cells are generally abundant and 
equally well revealed by IHC or by IF immunostaining. Putting these individual antigen stains together in multiplex 
immunostaining protocols, we use IHC staining for the single analyte stained on a slide (employing DAB chromogen) 
followed by IF staining for the structural/cell-type antigens on the slide.  The exception is when HER2 is our analyte, in 
which case we use IF staining for both HER2 analyte and CK cell-type/structural antigen. To prevent nonspecific 
staining by the secondary anti-mouse Ig antibodies used in subsequent IF staining (due to cross-binding to mouse 
antibodies applied previously during analyte IHC staining), we “strip” off all antibodies following DAB staining by 
incubating slides in a 5% SDS solution at 50oC for 5 minutes. If two analytes are to be studied in the same tumor slide 
(e.g. p-ERK+Ki67 or ER+PR), we perform dual analyte IHC staining using DAB as the reporter for one analyte and SG 
Blue as the reporter for the other analyte. We stain for cell-type/structural antigens following completion of IHC analyte 
immunostaining. We found that staining for phospho-epitopes (p-ERK, p-AKT, p-STAT3) diminish in cut tumor 
sections a month after sectioning. We have made it a policy to immunostain slides for phosphopeptide analytes within 
two weeks of sectioning. 
 
 
Task 2.  Optimize multispectral imaging and data capture for subsequent computational analysis 
We have tested various image capture conditions and parameters to determine the optimal for acquiring images for 
accurate analyte quantification and for adequate sampling of breast cancer specimens. Imaging is performed using 
multispectral imagers sold by Cambridge Research Instrumentation (CRi, Woburn, MA). Attached to an epifluorescence 
microscope, these capture photons from 420nm-720nm wavelength in both brightfield and fluorescent modes to record 
chromogen and fluorochrome staining in brightfield and fluorescent “data cubes”, respectively. We image at 400X 
magnification, which usually acquires 150-300 breast cancer cells for analysis in each image.  We usually acquire 10 
images from each specimen, so 1500-3000 tumor cells are analyzed. In the last year of this project, we began to use the 
Vectra Multispectral Imaging System (CRi) which includes a multispectral microscope equipped with a robotic slide 
loader and a computer-controlled stage. It includes Inform software (CRi) which allows automated image acquisition at 
200X magnification selected from regions of interest (ROI) determined at 40X magnification. The software has the 
ability to identify regions of breast carcinoma cells in hematoxylin-stained images, and this is used to select the ROI at 



low magnification for sampling at higher magnification.  We will incorporate this imaging system into our analysis 
platform as it offers the potential to type cells as breast carcinoma cells without immunostaining. Following image 
acquisition, Nuance software (CRi) “unmixes” the image data cubes into component stains (“channels”) using the pure 
spectra of the individual component stains. Currently, we can separate staining by two chromogens and up to five 
fluorochromes in the same space into distinct channels. 
 
 
Task 3.  Develop computational algorithms for multispectral immunohistological image analysis 
FARSIGHT software was developed to quantify intrinsic and associative parameters associated with cells segmented 
from multispectral image data. Starting with multispectral images of multiplexed immunostained slides that have been 
unmixed into individual stain channels as described above, the software is able to quantify key breast cancer molecular 
biomarkers (ER, PR, Ki67, and HER2/neu) on a cell-by-cell basis. Initially, each nucleus in an image is segmented using 
data in the hematoxylin (or DAPI) channel. Cell identification/enumeration and all subsequent steps in cytometric 
analysis depend on accurate nuclear segmentation, and Publication #1 (Trans. Biomed. Eng. 57;841-852 [2010]) 
describes development of our approach for obtaining accurate nuclear segmentation. Subsequent to nuclear 
segmentation, whole tumor cells are segmented based on the delineated nuclei, and cells classified into cell-types of 
interest based on their association with immunostaining for cell-type antigens. The intra-cellular distribution of 
molecular biomarkers and/or analytes is then determined for the cell types of interest and quantified for each cell. 
Publication #2 (Histopathology – accepted with revisions) details the development of FARSIGHT for whole cell 
segmentation, cell classification and analyte association. Farsight is currently being developed to analyze many images at 
a time without human intervention/input (batch image processing). 
 
 
Task 4.  Validate immunohistological analysis system and data obtained 
With FARSIGHT developed for segmenting nuclei and whole breast cancer cells in appropriately stained histological 
images and able to quantify ER, PR and HER2 expression, we are in the process of comparing FARSIGHT 
quantification of these biomarkers in breast cancer specimens with quantification performed by expert pathologists 
(validation studies). 
 
Please note that FARSIGHT software has been made freely available for use by the scientific community and is not 
patented. 
 
Key Research Accomplishments 
We have developed robust tissue immunostaining protocols that allow breast cancer specimens to be stained for various 
biomarkers and biological analytes using DAB chromogen along with histochemical staining for nuclei (with 
hematoxylin) and immunostaining for cytosol (CK) and plasma membrance (E-Cad) by fluorescence. 
 
We have optimized multispectral image capture of specimens immunostained for multiple antigens and structures such 
that staining for each is separated into distinct channels. 
 
We have incorporated the new Vectra Multispectral Imaging System (CRi) with its Inform software system into our 
analytical platform. 
 
We have optimized FARSIGHT software for nuclear segmentation based on hematoxylin staining (see Publication #1). 
 
We have developed FARSIGHT software for whole cell segmentation; the program segments cells in images stained for 
cytosolic and/or plasma membrane antigens and compartmentalizes  each into nuclear and extranuclear compartments for 
the purpose of subcellular (nuclear vs. extranuclear) analyte quantification and distribution (see Publication #2). 
 
 
Reportable Outcomes (Publication bibliography) 
 
Publication #1 
Al-Kofahi Y, Lassoued W, Lee WMF, and Roysam B: Improved automatic detection and 
segmentation of cell nuclei in histopathology images.  Trans. Biomed. Eng  57;841-852 (2010). 
 
Publication #2 
Al-Kofahi Y, Lassoued W, Grama K, Nath SK, Zhu J, Oueslati R, Feldman M, Lee WMF, and 
Roysam B: Cell-based quantification of molecular biomarkers in histopathology specimens. 
(revision submitted to Histopathology – decision pending). 
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Conclusions 
Multiple antigens reporting on prognostic/predictive biomarkers, cell signaling and cell fate decisions can be stained for 
on the same slide in human breast cancer specimens, along with markers of different subcellular compartments in tumor 
cells. 
 
Following separation of staining for these analytes and subcellular compartment markers into separate channels by 
multispectral microscopy and spectral unmixing, image analysis can accurately and rapidly segment nuclei and cells in 
images and associate analytes with the segmented cells and subcellular compartments computationally. 
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Improved Automatic Detection and Segmentation
of Cell Nuclei in Histopathology Images

Yousef Al-Kofahi, Wiem Lassoued, William Lee, and Badrinath Roysam∗, Senior Member, IEEE

Abstract—Automatic segmentation of cell nuclei is an essen-
tial step in image cytometry and histometry. Despite substan-
tial progress, there is a need to improve accuracy, speed, level
of automation, and adaptability to new applications. This pa-
per presents a robust and accurate novel method for segmenting
cell nuclei using a combination of ideas. The image foreground
is extracted automatically using a graph-cuts-based binarization.
Next, nuclear seed points are detected by a novel method com-
bining multiscale Laplacian-of-Gaussian filtering constrained by
distance-map-based adaptive scale selection. These points are used
to perform an initial segmentation that is refined using a second
graph-cuts-based algorithm incorporating the method of alpha ex-
pansions and graph coloring to reduce computational complex-
ity. Nuclear segmentation results were manually validated over
25 representative images (15 in vitro images and 10 in vivo im-
ages, containing more than 7400 nuclei) drawn from diverse can-
cer histopathology studies, and four types of segmentation errors
were investigated. The overall accuracy of the proposed segmenta-
tion algorithm exceeded 86%. The accuracy was found to exceed
94% when only over- and undersegmentation errors were con-
sidered. The confounding image characteristics that led to most
detection/segmentation errors were high cell density, high degree
of clustering, poor image contrast and noisy background, dam-
aged/irregular nuclei, and poor edge information. We present an
efficient semiautomated approach to editing automated segmenta-
tion results that requires two mouse clicks per operation.

Index Terms—Image cytometry, cell nuclei, histopathology,
segmentation.

I. INTRODUCTION

THE GOAL of this study is to develop efficien and ac-
curate algorithms for detecting and segmenting cell nu-

clei in 2-D histological images. This is commonly a firs step
to counting cells, quantifying molecular markers (antigens) of

Manuscript received February 18, 2009; revised June 26, 2009. First
published October 30, 2009; current version published March 24, 2010. This
work was supported by the U.S. Army Breast Cancer Research Program under
Grant W81XWH-07-1-0325 BC061142, by the National Institute of Biomedical
Imaging and Bioengineering under Grant R01 EB005157, and by the National
Science Foundation (NSF) under Grant EEC-9986821 to the Center for Subsur-
face Sensing and Imaging Systems. Asterisk indicates corresponding author.

Y. Al-Kofahi is with the Department of Electrical, Computer and Systems
Engineering (ECSE), Rensselaer Polytechnic Institute, Troy, NY 12180 USA
(e-mail: alkofy@rpi.edu).

W. Lassoued is with Dr. William’s Lee Laboratory, Abramson Cancer
Center, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
wiem1las@yahoo.fr).

W. Lee is with the Division of Hematology-Oncology, Abramson Cancer
Center, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
leemingf@mail.med.upenn.edu).

∗B. Roysam is with the Department of Electrical, Computer and Systems
Engineering (ECSE), Rensselaer Polytechnic Institute, Troy, NY 12180 USA
(e-mail: roysam@ecse.rpi.edu).

Color versions of one or more of the f gures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifie 10.1109/TBME.2009.2035102

interest in healthy and pathologic specimens [1], [2], and also for
quantifying aspects of normal/diseased tissue architecture [1].
The cell nuclei may be stained using fluorescen markers [e.g.,
4′,6′-diamidino-2-phenylindole (DAPI)], or with histochemical
stains (e.g., hematoxylin). It is important in these applications
to be able to detect the correct number of cells with high accu-
racy, and to delineate them accurately with utmost automation
and minimal human effort. It is also helpful to be able to eas-
ily adapt the software algorithms to images of different tissues
captured under differing imaging conditions.

Automated segmentation of cell nuclei is now a well-studied
topic for which a large number of algorithms have been de-
scribed in the literature [2]–[18], and newer methods continue
to be investigated. The main challenges in segmenting nuclei
in histological, especially pathological tissue specimens, result
from the fact that the specimen is a 2-D section of a 3-D tissue
sample. The 2-D sectioning can result in partially imaged nu-
clei, sectioning of nuclei at odd angles, and damage due to the
sectioning process. Furthermore, sections have finit thickness
resulting in overlapping or partially superposed cells and nuclei
in planar images. The end result of these limitations is a set of
image objects that differ considerably from the ideal of round
blob-like shapes. Their sizes and shapes in images can be irregu-
lar, and not always indicative of their 3-D reality. There is natural
variability among nuclear shapes and sizes even when they are
ideally sectioned. With pathological samples, nuclei can exhibit
unnatural shapes and sizes. Variable chromatin texture is an-
other source of segmentation error—highly textured nuclei are
harder to segment, especially when they are densely clustered.
Separation of densely clustered cell nuclei is a long-standing
problem in this field The presence of a large number of nuclei
in the fiel (especially whole-slide images) necessitates methods
that are computationally tractable, in addition to being effective.
Finally, imaging noise in the background regions, especially for
fluorescenc data, and the presence of spectral unmixing errors
in processed multispectral images results in additional errors.

Perhaps the most critical aspect of nuclear segmentation al-
gorithms is the process of detecting a set of points in the image,
usually one per cell nucleus and close to its center, that are
variously referred to as “markers” or “seeds.” These points are
used by subsequent algorithms to delineate the spatial extent
of each cell nucleus. Indeed, the accuracy of the segmentation
depends critically on the accuracy and reliability of the ini-
tial seed points. Several approaches have been used to detect
seed points. The early work in this fiel [3], [19] relied upon
the peaks of the Euclidean distance map. This method is often
used in conjunction with the watershed algorithm [9] due to its
computational efficien y and ready availability. However, it has

0018-9294/$26.00 © 2009 IEEE
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the widely acknowledged disadvantage of detecting too many
seeds, leading to over-segmentation. Some efforts at addressing
this limitation include filterin of seeds based on mutual prox-
imity [3], incorporation of additional cues such as the image
intensity gradient [9], and the use of region merging algorithms
as a postprocessing step [10], [11]. Another technique is to
detect local maxima points in the gray-scale image using the
h-maxima transform [16], [20]. This method was found to be
overly sensitive to image texture, and resulted in overseeding
with our images. The Hough transform [21] has also been used
for detecting seed points [2], [6]. This method is practical for
nearly circular nuclei, and requires excessive computation. More
recently, the very elegant iterative radial voting algorithm was
presented in [22], and has been used in several papers [14], [23].
This method requires edge extraction based on gradient thresh-
olding, and a careful choice of several parameters that proved
impractical in the automated pathology context. In [24] a reg-
ularized centroid transform was used. This method only uses
the binarized image and does not exploit additional cues present
in the image intensity data. In [8], a gradient fl w-tracking al-
gorithm was used. Like the radial voting idea, this method is
conceptually elegant. The difficult with this method in our
experiments was the rough chromatin texture that produces in-
accurate f ow values and/or directions.

In this paper, we present a method that overcomes many of
the limitations of the aforementioned methods. It is based on
the multiscale Laplacian-of-Gaussian (LoG) f lter originally in-
troduced by Lindeberg [25] as a generic blob detection method.
Recently, Byun et al. [4] used a blob detector based on the LoG
filte at a fi ed scale (set empirically) to count cells in reti-
nal images. This method offers important advantages, including
computational efficien y, ability to exploit shape and intensity
information, ease of implementation, especially the ability to
specify the approximate expected sizes of nuclei, and robustness
to variations. Building upon this study, and keeping in mind the
challenges specifi to histopathology images noted earlier, we
propose a method combining the LoG filte with automatic and
adaptive scale selection.

Aside from advances in seed detection, the fiel of auto-
mated image analysis has also witnessed the emergence of a new
generation of image segmentation algorithms. Notable among
these advances are methods based on graph cuts [26]–[30] that
offer the important advantage of computing globally optimal
solutions. Additional advances have been reported across the
literature. Notwithstanding these advances, several needs have
remained. For instance, the graph-cuts algorithm requires ef-
fective initialization. For this, we present a method in which
the results of seed detection are processed by a new generation
of fast clustering algorithms to generate an initial segmentation
that is subsequently refine using the graph-cuts segmentation
algorithm. Another important need is to be able to segment
large connected clusters of nuclei efficientl and accurately.
For this, we introduce a novel segmentation algorithm based
on automatic graph coloring and the method of α-expansions.
Overall, the effectiveness of the combination of these methods
is demonstrated on breast histopathology images. Fig. 1 shows
a f owchart illustrating the main steps of our method.

Fig. 1. Flowchart outlining the main steps of the proposed nuclear segmenta-
tion algorithm. The initial segmentation and refinemen steps are illustrated in
Fig. 2. The optional editing step is illustrated in Fig. 3.

II. MATERIALS AND METHODS

A. Histology and Nuclear Staining

For the in vivo tissue examples, deparaffinize 5 µM sections
of formalin-fi ed, paraffin-embedde human breast tissues were
rehydrated, and stained with hematoxylin (Vector Laboratories,
Burlingame, CA). For the in vitro tissue examples, 6 µM sec-
tions of OCT frozen blocks of cultured K1735 tumor cells were
stained with DAPI (Vector Laboratories, Burlingame, CA).

B. Image Capture

Images of hematoxylin or DAPI stained histopathology slides
were captured using a Nuance multispectral camera (CRI, Inc.,
Woburn, MA) mounted on a Leica epifluorescenc microscope
(Leica DMRA2). Images were captured using full resolution of
the Nuance camera at 8 bits of data per pixel and with 10 nm
spectral widths from 420 to 720 nm for brightfiel images, and
440–480 nm for DAPI. Nuance software was used to unmix
the chromogens and fluorophore in the data cube into a set
of nonoverlapping channels based on user–provided reference
spectra of the pure chromogens or fluorochromes respectively.
We denote the raw spectral data cube collected by the instrument
I(x, y, λ), where (x, y) are spatial coordinates of a pixel, and λ

is the wavelength. The spectral unmixing procedure results in
multiple nonoverlapping channels that are denoted as follows.
The nuclear channel is denoted IN (x, y). This paper is primarily
concerned with the processing of IN (x, y).

C. Automatic Image Binarization

The f rst step in nuclear segmentation is to separate the
foreground pixels in the nuclear channel IN (x, y) from the
background pixels. Several approaches have been presented
in the literature, and a survey on image thresholding methods
can be found in [31]. Common methods include histogram-
based [32], clustering-based [33]–[35], and entropy-based [7]
algorithms. More advanced techniques are based on graph-
cuts [15] and level set [36] algorithms, but they require good
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initialization/training. With this in mind, we propose a hybrid
approach that starts with an initial binarization that is subse-
quently refine using the graph-cuts algorithm.

For the initial binarization, we compute the normalized im-
age histogram, denoted h(i), where i denotes the intensity of
a pixel in the range {0, . . . , Imax}. We found that 128 bins
were adequate for these histograms. For the specimens studied
here, the histograms were found to be bimodal as expected, and
are modeled well by a mixture of two Poisson distributions.
This modeling choice was supported by analysis of the image
formation process [37], prior literature [37], and empirical com-
parison against the more commonly used mixture of Gaussians
model [34], [38], [39]. We used the Poisson-distribution-based
minimum error thresholding algorithm [38], [39]. The normal-
ized image histogram for the mixture of Poisson distributions is
written as

h(i) = P0 × p(i|0) + P1 × p(i|1) (1)

where P0 and P1 are the a priori probabilities of the background
and foreground regions, and p(i|j), j = 0, 1 are Poisson distri-
butions with means µj . For a threshold t, the Poisson mixture
parameters are given by

P0(t) =
t∑

i=0

h(i), µ0(t) =
1

P0(t)

t∑

i=0

i × h(i)

P1(t) =
Im a x∑

i=t+1

h(i), µ1(t) =
1

P1(t)

Im a x∑

i=t+1

i × h(i). (2)

The optimal threshold t∗ is chosen to minimize an error cri-
terion [38], as follows:

t∗ = arg min
t

{µ − P0(t)(ln P0(t) + µ0(t) ln µ0(t))

−P1(t)(ln P1(t) + µ1(t) ln µ1(t))} (3)

where µ is the mean intensity of the complete image. The result
of thresholding IN (x, y) using t∗ is refine by incorporating
spatial continuity constraints. We seek the pixel labeling L(x, y)
that minimizes the following energy function:

E(L(x, y)) =
∑

(x,y )

D(L(x, y); IN (x, y))

+
∑

(x,y )

∑

(x ′,y ′)∈N (x,y )

V (L(x, y), L(x′, y′)) (4)

where N(x, y) is a spatial neighbor of pixel (x, y). The globally
optimal labeling is computed using the widely used graph-cuts
algorithm [26]–[30], [40], [41]. The firs term in (4) is the data
term representing the cost of assigning a label to a pixel. It has
two possible values depending upon whether the foreground or
background model is used. Mathematically, this is written as
follows:

D(L(x, y); IN (x, y)) = − ln p(IN (x, y)|j = {0, 1}). (5)

The second term is the pixel continuity term that penalizes
different labels for neighboring pixels. Following [26], this is

written as follows:

V (L(x, y), L(x′, y′)) = η(L(x, y), L(x′, y′))

× exp
(
− [IN (x, y) − IN (x′, y′)]

2σ2
L

)

(6)

where

η(L(x, y), L(x′, y′)) =

{
1, if L(x, y) �= L(x′, y′)

0, if L(x, y) = L(x′, y′).

The V -term penalizes different labels for neighboring pixels
when |IN (x, y) − IN (x′, y′)| < σL . In our work, the scale fac-
tor σL is set empirically to values in the range 20–30 pixels.
Lower values are used when the image is smooth, and higher
values are used when the nuclear chromatin is highly textured.
We used an implementation of the fast max-fl w/min-cut algo-
rithm described by Boykov and Kolmogorov [27]. The previous
method results in accurate binarization results. Fig. 2(B) pro-
vides a visual example of the binarization results for the image
in Fig. 2(A).

D. Automatic Seed Detection and Initial Segmentation

The graph-cuts binarization algorithm extracts connected
clusters of nuclei that must be separated into individual nu-
clei. This requires identificatio of initial markers (a.k.a. seed
points) such that there is one marker per cell. For the present
work, multiscale LoG filte based approaches proved to be the
most effective. The LoG filte is given by

LoG(x, y;σ) =
∂2G(x, y;σ)

∂x2 +
∂2G(x, y;σ)

∂y2 (7)

where σ is the scale value, and G(x, y;σ) is a Gaussian with 0
mean and scale σ. When applied to an image containing blob-
like objects, this filte produces a scale-selective peak response
at the center of each object with radius r when r = σ

√
2. The

main advantage of this filte is that the locations of these peaks
are robust to the chromatin texture that has a much smaller scale
value compared to the nuclear blobs. The filterin results form a
topographic surface that provides a basis for cell segmentation.
In addition, as we describe shortly, it provides additional useful
information about the boundaries of touching nuclei. A direct
application of the multiscale LoG to images of nuclei would
be naı̈ve, since our tissue specimens contain a heterogeneous
population of cell types with different nuclear sizes. For this,
we propose a multiscale LoG with automatic scale selection,
as described by Lindeberg [25]. While this multiscale method
greatly improved upon the f xed-scale method, as expected, it
was nevertheless inadequate, as illustrated in Fig. 2(C) and (D).
In particular, this method fails over heterogeneous clusters of
nuclei with different sizes, and weak separating edges. In these
cases, it is possible for clusters of 2 or more small nuclei to
be detected falsely as a single larger blob that may also en-
croach on smaller blobs in its vicinity. Overcoming this issue
requires a more sophisticated control over the scale values. Our
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Fig. 2. Illustrating key steps of the proposed nuclear segmentation method. (A) Nuclear channel from spectral unmixing. (B) Foreground extraction results. Pixels
marked yellow represent a large connected component. (C) Surface plot of the multiscale LoG f ltering results for a small region. (D) Initial segmentation based
on the LoG. (E) Surface plot of the distance-map-constrained multiscale LoG. (F) Improved initial segmentation resulting from the distance-constrained LoG.
(G) Color coding of the yellow pixels in panel (B). (H) Final segmentation of the image in panel (A). Panels (I and J), (K and L), (M and N), (O and P), (Q and R), and
(S and T) indicate initial and f nal segmentation closeups taken from different regions in the image shown in panel (H).

method to achieve such control relies on exploiting shape and
size cues available in the Euclidean distance map DN (x, y) of
the binarized image [42], [43]. Our method proceeds as fol-
lows. We compute the response of the scale-normalized LoG
filte LoGnorm(x, y;σ) = σ2 LoG(x, y;σ) at multiple scales
σ = [σmin , . . . , σmax] in steps of 1. Then, we use the Euclidean
distance map to constrain the maximum scale values when com-

bining the LoG filterin results across scales to compute a single
response surface denoted RN (x, y) as follows:

RN (x, y) = arg max
σ∈[σm in , σMAX ]

{LoGnorm(x, y;σ) ∗ IN (x, y)} (8)

where σMAX = max{σmin ,min{σmax , 2 × DN (x, y)}}.
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In effect, the distance map constrains the maximum scale
value at each point. The response RN (x, y) can be thought of
as a topographical surface whose peaks indicate centers of indi-
vidual nuclei—these are the seed points (nuclear markers). We
identify the local maxima of RN (x, y), and impose a minimum
size (based on the expected range of nuclear diameters) to fil
ter out irrelevant minima, as described further in the following
subsection. The effect of using the distance map constraint is
illustrated in Fig. 2. For instance, panels (C) and (D) show a
surface plot of the multiscale LoG and the corresponding initial
segmentation (discussed shortly), respectively. Clearly, the cen-
tral nucleus is oversmoothed and encroaches into its neighbors.
The reason for the encroachment is the use of large σmax that
is needed to detect large cells in other regions in the image.
Fig. 2(E) and (F), respectively, shows surface plots of RN (x, y)
and the corresponding initial segmentation. It is clear that the
accuracy of seed locations and the initial cells boundaries are
much improved by imposing the scale constraint.

Using RN (x, y) and the seed points detected, as described
earlier, we compute an initial segmentation of the nuclei, as de-
scribed shortly. The classical approach used by several authors
(including ourselves) is based on the watershed algorithm, and
its many variants and improvements [2], [3], [5], [9]–[11], [16],
[44], [45]. This method has the advantage of speed, simplicity,
absence of adjustable parameters and a degree of f exibility that
results from being able to modify the underlying distance map.
The main disadvantage of this algorithm for the present task
is its sensitivity to even minor peaks in the distance map that
results in over segmentation, and detection of tiny regions as ob-
jects. To address this problem, we propose an alternate method
based on size-constrained clustering. The use of clustering for
nuclear/cell segmentation is not new, and predates the watershed
method, e.g., [44] and [46]. However, clustering methods have
been computationally expensive and difficul to scale to large
images. Recently, Wu et al. [47] described the local-maximum
clustering algorithm [47] that overcomes the previous limita-
tions, and paved the way for the present work. This algorithm
has a resolution parameter r that is used to defin a search area,
denoted A(x, y) of size 2r × 2r around each pixel in RN (x, y).
In a nutshell, this algorithm uses the seed points as cluster cen-
ters, and assigns each pixel in the foreground image to these
centers to form clusters.

To illustrate the effect of varying the resolution parameter on
the clustering (initial segmentation results), Fig. 3 shows two
1-D examples. The shown curve consists of several 1-D blobs
with different sizes. When using a small resolution parameter
(r = 3) all the three blobs are detected. The local maxima (seed
points) are indicated in dark red, and the vertical dashed-red lines
separate the blobs. The direction and length of the black arrows
indicate the assignment of each point to its local maximum in a
region (distance in 1-D) define by the resolution parameter. In
panel (B), we use a larger value of the resolution parameter (r =
6). Therefore, the small blob (center) is bypassed and pixels to
its left are assigned to their local maxima points to its right. Only
two blobs (with two corresponding seed points) were detected.
Note that the separating lines pass through the minima between
the two blobs. These points can be thought of as inflectio

Fig. 3. Illustrating the local-maximum clustering method. A 1-D curve with
three blobs is used. The blob in the middle is very small compared to the others.
Two values for the resolution parameter are used. Using in panel (A) results in
detecting all three blobs. In panel (B), the use of resulted in missing the small
blob and merging it to the larger one on the right. The black arrows indicate
the assignments of points to their local maxima. The detected seed points are
displayed as red dots.

points, where one inflectio point is present between blobs. In
2-D images, we have separating boundaries between 2-D blobs.

There are two major advantages of using this method over the
watershed method [48]. First, the resolution parameter r pro-
vides the ability to avoid forming small clusters, as was clearly
shown in the two synthetic examples of Fig. 3. Second, the clus-
tering method works on foreground points only, which makes it
faster. In our experiments, this algorithm was comparably fast
to the watershed, and often faster. In our study, the parameter
r was set empirically in the range of fi e pixels. Intuitively, r
specifie the smallest size of the clusters that we are willing to
accept for the next stage of processing.

E. Refinement of Initial Nuclear Segmentation
using α-Expansions and Graph Coloring

The segmentation contours produced by the aforementioned
cluster analysis are approximate because the clusters are formed
using RN (x, y) rather than the original image, and therefore
require further refinemen using the image intensity.

The purpose of the refinemen is to enhance the initial con-
tours between touching nuclei to better delineate the true edges
between them. To meet this goal, three requirements are needed
in the segmentation refinemen step. First, it should preserve the
shape of the cell nucleus based on some shape model. Second,
there should be some rules that prevent two or more nuclei from
being merged. This happens if we allow two nonneighbor nu-
clei to encroach into a third one between them until they merge.
Third, given the large number of cell nuclei found in real im-
ages, the refinemen step should allow multiple cell nuclei need
to be refine concurrently for efficien y.

As with the binarization refinement this step is also formu-
lated as an energy minimization that is solved using a graph-cuts
algorithm. However, the problem here is more challenging since
we have multiple labels, where the number of labels equals the
number of cells in a connected component. In the binary case,
the graph-cuts method find the global minima in polynomial
time. However, findin a multiway cut, such that the resulting
labeling configuratio minimizes the energy function is known
to be NP-hard. Boykov et al. [29] introduced two algorithms,
known as α-expansion and α − β swap, respectively, that can
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efficientl fin good approximate solutions to the multiway cut
to within a known factor of the global minimum. In this study,
the former is used. In the α-expansion method, we formulate the
segmentation as an iterative binary labeling problem. At each
iteration, one label is set to an integer α, and the rest of the
labels are set to another value, denoted α, where α �= α. Then,
a binary graph-cuts step (called an expansion) is carried out,
in which pixel labels are allowed to change in one direction
from α to α. The border of the cell labeled with α is refine
by expanding it into its neighbors until the energy function is
minimized. In the ideal case, the energy function will reach its
minimum when the segmentation contour delineates the true
nucleus contour, at which the gradient is maximum. The data
and smoothness terms of the energy function should be cho-
sen carefully in order to achieve that goal. For the α-expansion
method to work, the smoothness term denoted V has to be a met-
ric that requires three conditions to hold [29]. Given any three
pixel labels L1 , L2 , and L3 , the three conditions are listed as
follows:

1) V (L1 , L2) = 0 ⇔ L1 = L2 ;
2) V (L1 , L2) = V (L2 , L1) ≥ 0;
3) V (L1 , L2) ≤ V (L1 , L3) + V (L3 , L2).
We used a spatially varying smoothness function similar to

the one used in the binarization step

V (L(x, y), L(x′, y′)) = η(L(x, y), L(x′, y′))

× exp(−|IN (x, y) − IN (x′, y′)|)

where

η(L(x, y), L(x′, y′)) =

{
Const, if L(x, y) �= L(x′, y′)

0, if L(x, y) = L(x′, y′).

The previous smoothness function is reached when the label-
ing discontinuities occur at the edges between the nuclei. The
data term at each pixel depends on the likelihood of assigning
it to each label (nucleus). As mentioned earlier, the LoG out-
put profil of each nucleus is roughly similar to a Gaussian. In
addition, the elliptical shape of the cell is similar to that of the
2-D Gaussian. Hence, a Gaussian model is used to represent
each cell. A maximum likelihood method (MLE) is used to es-
timate the Gaussian parameters. The inputs to the MLE are the
(x, y) coordinates of the pixels of each nucleus, weighted by
the pixelwise LoG responses. The likelihood for a pixel (x, y)
to be assigned to cell i is G(x, y; µi,Σi), where µi and Σi

are the mean and the covariance matrix of the ith Gaussian,
respectively.

Unfortunately, the α-expansion method is not practical when
the number of cells in a connected component is large (>20),
leading to an excessive number of expansions that require an
impractical amount of computer memory and time. To address
this difficult , we propose a novel method based on graph col-
oring that is described next. We start by noting that when the
α-expansion procedure is applied to an initially segmented cell,
it will only expand to its neighboring regions. This is because
the expansion procedure will not assign a pixel to a distant cell.
Therefore, we turn the problem into using a small number of
labels, with each having a large number of cells expanding in

parallel. This is achieved by using a graph coloring approach
similar to the one used in [13], but we differ in the use a two-
level region adjacency graph. Using the initial segmentation, we
build a region adjacency graph. Unlike our prior work [10], [11],
we now use a two-level adjacency graph in which a cell is ad-
jacent to its direct neighbors, and to the neighbors’ neighbors
as well. The second level of adjacency is added to reduce the
possibility that two nonneighboring cells with the same color
merge after an expansion. The graph is then colored sequentially
such that no two adjacent cells have the same color. Choosing
the number of colors is a challenge since the well-known four-
color theorem [49] does not apply in our case because of our
two-level structure. The problem of findin the minimal number
of colors is nondeterministic polynomial-time hard (NP-hard).
For these reasons, we use a sequential coloring method that is
simple to implement, but does not necessarily yield the smallest
number of colors. Fig. 2(G) shows the coloring output for the
initial segmentation of a connected component. This connected
component [also shown in yellow in the binarization, which is
shown in Fig. 2(B)] contains 123 nuclei, but only eight colors
are used.

The resulting colors are used as labels for the α-expansion
step. At each iteration, all the nuclei with a given color are
assigned the label α, while all others are assigned α. Then, α
cells are expanded concurrently into α cells. As a result, just
a few (usually less than 10) expansions are needed regardless
of the much larger number of cells in a connected cluster. The
smoothness term described earlier is a pixel-level function, since
it depends on the local gradient between adjacent pixels, and
hence it is not affected by the grouping of cells based on graph
coloring. On the other hand, the data term is a function define
on a cell level, since it is based on a Gaussian model of the cell.
Therefore, it is modifie in order to compute likelihoods to be
assigned to groups (colors) rather than individual cells. Suppose
that the number of colors assigned to a connected component
with Nc cells is Nr , where Nr 	 Nc . The likelihood that a pixel
(x, y) will be assigned the jth color is

p(L(x, y) = j) = max
{

G

(
x, y;µi,

∑

i

)
|Ci = j

}
, j = 1.

(9)
The corresponding data term that represents the penalty for

assigning pixel (x, y) to color j is

D(L(x, y) = j; IN (x, y)) = − ln p(L(x, y) = j). (10)

The segmentation refinemen consists of multiple iterations
of α-expansion up to a preset maximum number of iterations
(usually 3), or until no change in any pixel label will reduce the
energy function. Finally, the resulting objects are renumbered
to achieve consistency with the numbers of the initial objects.
In Fig. 2, panels (I and J), (K and L), (M and N), (O and P),
(Q and R), and (S and T), respectively, represent initial and
refine segmentation closeups taken from different regions in
the image shown in panel (H) of the same figure
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Fig. 4. Illustrating the impact of (optional) seed editing on the fina segmenta-
tion. (A), (E), and (I) Initial segmentations are shown in the f rst column for three
selected regions. Yellow crosses indicate locations of mouse clicks requesting
pairs of segmented objects to be merged. (B), (F), and (J) Results of merging are
shown in the second column, in addition to the user’s requests to split objects
indicated as blue crosses. The blue crosses are initial seeds locations for the
two new objects. (C), (G), and (K) Results of splitting are shown in the third
column. (D), (H), and (L) Final segmentation after refinemen is shown in the
fourth column.

F. Efficient Computer-Assisted Editing of Automated
Segmentation Results

Automatic segmentation algorithms can provide fast and ac-
curate segmentation of nuclei. However, segmentation errors
cannot be avoided even when using optimal parameter values.
Hence, human interaction might be needed to fi some the seg-
mentation errors in order to obtain the highest level of accuracy.
Indeed, human interaction should be made minimal by tuning
the segmentation parameters to reduce the number of errors. In
addition, the editing method should be made easy and fast. In
this study, two types of errors (define in the next section) can be
corrected using manual editing. The f rst type is over segmen-
tation and is corrected by merging fragments of oversegmented
nuclei. The merging is performed on pairs of neighbor objects
by clicking on one point inside each one of them. Fig. 4(A), (E),
and (I) shows closeups of initial segmentation results. User se-
lected points (using mouse clicks) for pair of objects that need to
be merged are shown in yellow. The merging results are shown
in Fig. 4(B), (F), and (J).

The second type of errors that can be corrected is under seg-
mentation. An undersegmented object is split into two objects
by clicking at two points inside it. An automatic splitting method
is used to draw an initial contour between the two new objects.

The splitting method starts by computing the approximate
Euclidian distances from each point inside the undersegmented
object to the manually selected points. Then, the splitting is done
based on the minimum of the two distances at each point. Blue
crosses in Fig. 4(B), (F), and (J) represent user selected pairs of
points indicating objects that need to be split. Fig. 4(C), (G), and
(K) shows the automatic splitting results. Changes to the initial

segmentation caused by editing are also applied on all the im-
ages needed in the segmentation refinemen step. As illustrated
previously, the refinemen step uses a graph-cuts-based tech-
nique (α-expansion), where both the initial segmentation and
the LoG output [RN (x, y)] are needed. The editing methods
mentioned earlier will update the labels in the initial segmenta-
tion. On the other hand, the LoG output RN (x, y) is updated as
follows. In the case of oversegmentation, the LoG output profil
of the oversegmented object is replaced by the inverted distance
map from the center of the new object produced by merging.
On the other hand, the LoG output profil of an oversegmented
object is replaced by the inverted distance map from the centers
of the two new objects resulting from splitting. Fig. 4(D), (H),
and (L) shows the fina segmentation after refinement A related
two-mouse-click based technique for interactive whole cell seg-
mentation was presented in [50], where the user segments one
cell at a time by clicking on a point at the center of cell and
another one on its border. The image is then transformed into
polar coordinates, a dynamic programming algorithm is used to
fin the optimal path on the cell border from left to right, and
finall that path is mapped back into Cartesian coordinates.

One drawback of the presented editing tool is the need to
scan the image visually to search for segmentation errors. This
can be a time consuming task in very large images with large
numbers of cells. One possible solution is to adopt the approach
presented by the same group [51] in which a segmentation confi
dence score is computed for each segmented cell nucleus based
on some morphological an intensity based features. The lower
the confidenc score, the more likely the segmentation error is.
Then, segmented cell nuclei are sorted based on their confi
dence scores and the user starts inspecting those them starting
from those with low confidenc values. Yet another approach
that is explored as part of the FARSIGHT project (www.farsight-
toolkit.org) is to identify outliers (based on one or more features)
to detect nuclei that require further inspection for potential edit-
ing. In general, the use of pattern analysis tools to guide the user
for expedited editing is a topic of ongoing research.

III. RESULTS AND VALIDATION

The results of automated analysis for 25 representative im-
ages (15 in vitro images and ten in vivo images, containing more
than 7400 nuclei in all) drawn from diverse cancer histopathol-
ogy studies were inspected and scored manually with the goal
of developing a conservative assessment of the frequency and
types of segmentation errors. The manual scoring was recorded
electronically, and a sample is displayed in Fig. 5(A). In this
figure the type of error is indicated as a color-coded dot. Seeds
of correctly segmented nuclei are displayed as green dots. Un-
dersegmentation errors (i.e., a failure to split a region into the
correct number of nuclei) are indicated as dark blue dots. Over-
segmentation errors (i.e., excessive splitting) are indicated as
purple dots. In addition to these standard types of errors, we
also looked for encroachment errors (indicated as yellow dots)
that occur when the automated algorithms do not correctly
place the boundary between a pair of touching nuclei. In other
words, it is the error in delineating the true border between two
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Fig. 5. Illustrating the results validation criteria. (A) Segmentation output
of an image with color-coded seeds on each nucleus to identify whether it
is correctly segmented or the type of segmentation error. (B) Example of an
undersegmentation error. (C) Example of oversegmentation error. (D) Example
of an encroachment error. (E) Example of a binarization error.

nuclei. The last type of segmentation errors is binarization er-
rors. This type of error includes the case of nuclei encroaching
on their neighbors, or nuclei encroached over by their neighbors.
The main difficult with quantificatio of encroachment errors
is its innate subjectivity. Another difficult is the acceptance
threshold. In a strict sense, one could argue successfully that
every adjacent pair of nuclei suffers from some encroachment
error. In our work, a slight encroachment of a few pixels that
does not change the nucleus shape or size significantl is not
considered as an error. We only consider moderate to severe
encroachment errors in which the error corresponds to at least
25% of the total nucleus area. Although this manual observation
is still subjective and may vary from an observer to another, it
can give a good approximation of the number of encroachment
errors. Furthermore, we also examined errors from automatic
binarization of the image data. The binarization is visualized as
boundaries overlaid on the image [see Fig. 5(A)]. Incorrectly
binarized nuclei are indicated with light blue dots in Fig. 5(A).
We considered errors for which a cell nucleus or part of it is
missed at the binarization step.

Finally, Fig. 6 shows six typical examples of seg-
mented nuclear images. All of the scoring results are pro-
vided to the reader in the electronic supplement (available:
www.ecse.rpi.edu/∼roysam/TBME-2010-Supp/). Table I sum-
marizes the error analysis using 25 images. The firs 15 in the
table are in vitro images while the last ten are in vivo. Overall,
just considering under- and oversegmentation errors alone, our

fully automated algorithm achieved >94% accuracy. These data
are helpful in comparing our algorithm to previously published
methods [9], [18]. When encroachment and binarization errors
are included, our algorithm showed an accuracy of more than
86%. The performance of our algorithm with regard to over-
and undersegmentation errors can be described in terms of pre-
cision and recall measures. Specificall , the last two columns of
these values are indicated in Table I. The overall F -measure
(2 × precision × recall)/(precision + recall) for these data is
0.97. We studied the performance of our binarization refine
ment step by comparing its output with the initial binarization
using twenty 2-D phantom images for which we have ground
truth data. For each image, we compared the percentages of in-
correctly labeled pixels before and after binarization refinemen
using graph cuts, as detailed in Table II. Fig. 7(A) and (B) shows
a sample phantom image and the corresponding ground truth.
Initial segmentation output is shown in panel (C), while the re-
finemen output is shown in panel (D). It is clear that significan
improvement is achieved after applying graph-cuts refinement

Finally, we studied the complexity reduction achieved using
graph coloring by comparing segmentation processing times
with and without graph coloring for 15 automatically created
phantom images. All the images have the same size (300 × 300),
with only one connected component (cluster of nuclei), and a
varying number of nuclei in each cluster (10–150). Table III
shows a summary of the analysis. Increasing numbers of nu-
clei in the cluster results in rapidly increasing processing time
when graph coloring is not used. That is because the num-
ber of required α-expansions is equal to the number of nuclei
in the cluster. However, no significan increase in processing
time is noted when graph coloring is used, since the number of
α-expansions is equal to the number of colors, which is in the
range of 5 to 10 colors. Three sample phantom images are shown
in Fig. 8(A)–(C) containing 10, 70, and 130 nuclei, respectively.
The segmentation results are shown as red outlines. A graphical
representation of the results in Table III is shown in Fig. 8(D),
which shows 2-D plots of the number of cells in the connected
component (cluster) versus the processing time for both cases.

IV. DISCUSSION

The present work has built upon, integrated, and extended
multiple recent advances in the biological image analysis field
The resulting algorithms have proved to be extremely robust and
accurate. In our experience, the usually tricky task of choosing
the optimal parameter settings for the proposed algorithm is both
simple as well as intuitive. When errors do occur, our method
of editing the seeds, followed by segmentation refinemen is
extremely efficien in practice. It requires minimal effort, and
makes best use of the human observer’s ability to discern com-
plex patterns, and resolve ambiguities. The actual segmentation
is best carried out computationally.

There are several known sources of the errors analyzed by
us. Oversegmentation usually happens when a nucleus’ chro-
matin is highly textured (especially true for large nuclei) or
when the nucleus shape is extremely elongated. This is par-
ticularly common with nuclei that deviate significantl from a
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Fig. 6. Sample segmentation results of six 2-D nuclear images including [(A) and (B)] two in vitro images and [(C)–(F)] four in vivo images.

blob shape, as is the case with some vascular endothelial cells.
Undersegmentation usually occurs when nuclei (especially
small ones) are highly clustered with weak borders between
the nuclei. The causes of encroachment errors were much more
diverse, and most often caused by weak object separation cues
in the image. The types of errors mentioned earlier are, to some
extent, influence by the choice of parameter settings. This is

discussed further shortly. Binarization errors were largely due
to variations in the nuclear signal intensity, specificall , a weak
signal resulted in most binarization errors.

A traditional difficult with automated algorithms is the ef-
fort required to tune them by selecting appropriate parameter
settings to new images and applications. In this regard, the algo-
rithms we described are well-behaved and intuitive. The main
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TABLE I
SUMMARY OF SEGMENTATION PERFORMANCE DATA FOR 25 SAMPLE IMAGES*

TABLE II
COMPARISON OF BINARIZATION ACCURACY BEFORE AND AFTER

GRAPH-CUT REFINEMENT

parameters that must be provided to the software include the
minimum scale for the LoG filte σmin , the maximum scale
value σmax , which defin the expected range of sizes of the
nuclei. In our experiments, we used values in the range of four
to eight pixels for σmin , and 10–20 pixels for σmax . Although
our algorithms are multiscale by design, the choice of these

Fig. 7. Comparing initial and graph-cut refine binarization results using a
phantom image for which the ground truth is known. (A) 2-D phantom image.
(B) Binarization ground truth. (C) Initial binarization output. (D) Results of
binarization refinemen using graph cuts.

TABLE III
ILLUSTRATING THE COMPLEXITY AND PROCESSING TIME REDUCTION

AFTER USING GRAPH COLORING

parameters affects the balance of over- and undersegmentation
errors to a small extent. Between these two parameters, σmin
is more influential Specificall , if the value of σmin is much
smaller than the expected minimum size of the nuclei, then the
incidence of oversegmentation increases. Smaller values of this
parameter are also needed to account for small fragments of
nuclei that are characteristic of 2-D sections of 3-D tissue. On
the other hand, if the value of σmax is too low, oversegmentation
errors become more prevalent. An overly high value of σmax is
much more benign in nature because it is used in combination
with the distance map—it can result in undersegmentation or
encroachment errors when exceptionally large and highly clus-
tered groups of nuclei are encountered. The clustering resolution
parameter r was generally chosen in the range of 3–5 pixels,
and the weighting parameter σL for the graph-cuts segmentation
algorithm was in the range of 20–30.
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Fig. 8. Illustrating the effect of graph coloring using 15 phantom images
with the same size and one nuclear cluster, but with different number of nuclei
(x-axis). Three examples are shown in (A)–(C) containing 10, 70, and 130
nuclei, respectively. Detected seeds are shown as green dots and nuclear seg-
mentation results are shown as red outlines. (D) Number of cell nuclei in the
cluster versus segmentation processing time (without graph coloring in red and
with graph coloring in blue).

The algorithm described here is incorporated into the
FARSIGHT toolkit [51] that is designed to analyze multipa-
rameter histopathology images. This software system and im-
plementations of the algorithms reported here are available to
interested colleagues from the corresponding author.

ACKNOWLEDGMENT

The authors wish to thank Dr. S. Nath for helpful discussions.

REFERENCES

[1] C. Bilgin, C. Demir, C. Nagi, and B. Yener, “Cell-graph mining for breast
tissue modeling and classification, in Proc. 29th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBS 2007), pp. 531–5314.

[2] C. Ortiz de Solorzano, E. Garcia Rodriguez, A. Jones, D. Pinkel,
J. W. Gray, D. Sudar, and S. J. Lockett, “Segmentation of confocal micro-
scope images of cell nuclei in thick tissue sections,” J. Microsc., vol. 193,
no. 3, pp. 212–226, Mar. 1999.

[3] H. Ancin, B. Roysam, T. E. Dufresne, M. M. Chestnut, G. M. Ridder,
D. H. Szarowski, and J. N. Turner, “Advances in automated 3-D image
analyses of cell populations imaged by confocal microscopy,” Cytometry,
vol. 25, no. 3, pp. 221–234, Nov. 1, 1996.

[4] J. Y. Byun, M. R. Verardo, B. Sumengen, G. P. Lewis, B. S. Manjunath,
and S. K. Fisher, “Automated tool for the detection of cell nuclei in digital
microscopic images: Application to retinal images,” Mol. Vis., vol. 12,
no. 105–107, pp. 949–960, Aug. 16, 2006.

[5] M. K. Chawla, G. Lin, K. Olson, A. Vazdarjanova, S. N. Burke, B. L.
McNaughton, P. F. Worley, J. F. Guzowski, B. Roysam, and C. A. Barnes,
“3D-catFISH: a system for automated quantitative three-dimensional com-
partmental analysis of temporal gene transcription activity imaged by flu

orescence in situ hybridization,” J. Neurosci. Methods, vol. 139, no. 1,
pp. 13–24, Oct. 15, 2004.

[6] C. O. De Solorzano, R. Malladi, S. A. Lelievre, and S. J. Lockett, “Seg-
mentation of nuclei and cells using membrane related protein markers,”
J. Microsc. Oxford, vol. 201, pp. 404–415, Mar. 2001.

[7] P. R. Gudla, K. Nandy, J. Collins, K. J. Meaburn, T. Misteli, and S. J.
Lockett, “A high-throughput system for segmenting nuclei using mul-
tiscale techniques,” Cytometry A, vol. 73, no. 5, pp. 451–466, May
2008.

[8] G. Li, T. M. Liu, J. X. Nie, L. Guo, J. Malicki, A. Mara, S. A. Holley,
W. M. Xia, and S. T. C. Wong, “Detection of blob objects in micro-
scopic zebrafis images based on gradient vector diffusion,” Cytometry
A, vol. 71A, no. 10, pp. 835–845, Oct. 2007.

[9] G. Lin, U. Adiga, K. Olson, J. F. Guzowski, C. A. Barnes, and B. Roysam,
“A hybrid 3D watershed algorithm incorporating gradient cues and object
models for automatic segmentation of nuclei in confocal image stacks,”
Cytometry A, vol. 56, no. 1, pp. 23–36, Nov. 2003.

[10] G. Lin, M. K. Chawla, K. Olson, C. A. Barnes, J. F. Guzowski,
C. Bjornsson, W. Shain, and B. Roysam, “A multi-model approach to
simultaneous segmentation and classificatio of heterogeneous popula-
tions of cell nuclei in 3D confocal microscope images,” Cytometry A,
vol. 71, no. 9, pp. 724–736, Sep. 2007.

[11] G. Lin, M. K. Chawla, K. Olson, J. F. Guzowski, C. A. Barnes, and
B. Roysam, “Hierarchical, model-based merging of multiple fragments
for improved three-dimensional segmentation of nuclei,” Cytometry A,
vol. 63, no. 1, pp. 20–33, 2005.

[12] S. K. Nath, F. Bunyak, and K. Palaniappan, “Robust tracking of migrating
cells using four-color level set segmentation,” Lect. Notes Comput. Sci.
(ACIVS), vol. 4179, pp. 920–932, 2006.

[13] S. K. Nath, K. Palaniappan, and F. Bunyak, “Cell segmentation using
coupled level sets and graph-vertex coloring,” in Proc. Med. Image Com-
put. Comput.-Assisted Intervention (MICCAI), 2006, vol. 4190, pp. 101–
108.

[14] B. Parvin, Q. Yang, J. Han, H. Chang, B. Rydberg, and M. H. Barcellos-
Hoff, “Iterative voting for inference of structural saliency and characteri-
zation of subcellular events,” IEEE Trans. Image Process., vol. 16, no. 3,
pp. 615–623, Mar. 2007.

[15] C. Russell, D. Metaxas, C. Restif, and P. Torr, “Using the Pn Potts model
with learning methods to segment live cell images,” in Proc. IEEE 11th
Int. Conf. Comput. Vis., 2007, pp. 1–8.

[16] C. Wahlby, I. M. Sintorn, F. Erlandsson, G. Borgefors, and E. Bengtsson,
“Combining intensity, edge and shape information for 2D and 3D seg-
mentation of cell nuclei in tissue sections,” J. Microsc. Oxford, vol. 215,
pp. 67–76, Jul. 2004.

[17] M. Wang, X. Zhou, F. Li, J. Huckins, R. W. King, and S. T. Wong, “Novel
cell segmentation and online SVM for cell cycle phase identificatio in
automated microscopy,” Bioinformatics, vol. 24, no. 1, pp. 94–101, Jan.
1, 2008.

[18] G. Li, T. Liu, A. Tarokh, J. Nie, L. Guo, A. Mara, S. Holley, and S. T. Wong,
“3D cell nuclei segmentation based on gradient f ow tracking,” BMC Cell
Biol., vol. 8, p. 40, 2007.

[19] N. Malpica, C. O. de Solorzano, J. J. Vaquero, A. Santos, I. Vallcorba,
J. M. Garcia-Sagredo, and F. del Pozo, “Applying watershed algorithms to
the segmentation of clustered nuclei,” Cytometry, vol. 28, no. 4, pp. 289–
297, Aug. 1, 1997.

[20] P. Soille, Morphological Image Analysis: Principles and Applications.
Berlin, Germany: Springer-Verlag Telos, 1999.

[21] D. H. Ballard, “Generalizing the hough transform to detect arbitrary
shapes,” Pattern Recognit., vol. 13, no. 2, pp. 111–122, 1981.

[22] Q. Yang and B. Parvin, “Perceptual organization of radial symmetries,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2004,
pp. 320–325.

[23] H. Chang, Q. Yang, and B. Parvin, “Segmentation of heterogeneous blob
objects through voting and level set formulation,” Pattern Recognit. Lett.,
vol. 28, no. 13, pp. 1781–1787, Oct. 1, 2007.

[24] Q. Yang and B. Parvin, “Harmonic cut and regularized centroid transform
for localization of subcellular structures,” IEEE Trans. Biomed. Eng.,
vol. 50, no. 4, pp. 469–475, Apr. 2003.

[25] T. Lindeberg, “Feature detection with automatic scale selection,” Int. J.
Comput. Vis., vol. 30, no. 2, pp. 79–116, Nov. 1998.

[26] Y. Boykov and G. Funka-Lea, “Graph cuts and eff cient N-D image seg-
mentation,” Int. J. Comput. Vis., vol. 70, no. 2, pp. 109–131, Nov. 2006.

[27] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-fl w algorithms for energy minimization in vision,” IEEE Trans.
Pattern Anal. Mach., vol. 26, no. 9, pp. 1124–1137, Sep. 2004.



852 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 4, APRIL 2010

[28] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary
& region segmentation of objects in N-D images,” in Proc. Int. Conf.
Comput. Vision, 2001, pp. 1025–1112.

[29] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 11, pp. 1222–1239, Nov. 2001.

[30] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2,
pp. 147–159, Feb. 2004.

[31] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and
quantitative performance evaluation,” J. Electron. Imag., vol. 13, no. 1,
pp. 146–168, Jan. 2004.

[32] R. Guo and S. M. Pandit, “Automatic threshold selection based on his-
togram modes and a discriminant criterion,” Mach. Vis. Appl., vol. 10,
no. 5–6, pp. 331–338, Apr. 1998.

[33] J. Kittler and J. Illingworth, “On threshold selection using clustering crite-
ria,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 5, pp. 652–655,
Sep. 1985.

[34] J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern
Recognit., vol. 19, no. 1, pp. 41–47, 1986.

[35] N. Otsu, “Threshold selection method from Gray-level histograms,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66, Jan. 1979.

[36] J. Lie, M. Lysaker, and X. C. Tai, “A binary level set model and some
applications to Mumford-Shah image segmentation,” IEEE Trans. Image
Process., vol. 15, no. 5, pp. 1171–1181, May 2006.

[37] N. R. Pal and S. K. Pal, “Image model, Poisson distribution and object
extraction,” Int. J. Pattern Recognit. Artif. Intell., vol. 5, no. 3, pp. 459–
483, 1991.

[38] J. L. Fan, “Notes on Poisson distribution-based minimum error threshold-
ing,” Pattern Recognit. Lett., vol. 19, no. 5–6, pp. 425–431, Apr. 1998.

[39] N. R. Pal and D. Bhandari, “On object background classification, Int. J.
Syst. Sci., vol. 23, no. 11, pp. 1903–1920, Nov. 1992.

[40] Y. Boykov, O. Veksler, and R. Zabih, “Markov random field with efficien
approximations,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
1998, pp. 648–655.

[41] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic programming
for detecting, tracking, and matching deformable contours (vol 17, pg 294
1995),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 5, pp. 575–
575, May 1996.

[42] J. Gill, H. Breu, D. Kirkpatrick, and M. Werman, “Linear time Euclidean
distance transform algorithms,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 17, no. 5, pp. 529–533, May 1995.

[43] O. Cuisenaire, “Fast Euclidean distance transformations by propagation
using multiple neighbourhoods,” Comput. Vis. Image Understanding,
vol. 76, no. 2, pp. 163–172, Nov. 1999.

[44] R. W. Mackin, B. Roysam, T. J. Holmes, and J. N. Turner, “Automated
three-dimensional image analysis of thick and overlapped clusters in cyto-
logic preparations. Application to cytologic smears,” Anal. Quant. Cytol.
Histol., vol. 15, no. 6, pp. 405–417, Dec. 1993.

[45] R. W. Mackin, Jr., L. M. Newton, J. N. Turner, and B. Roysam, “Advances
in high-speed, three-dimensional imaging and automated segmentation
algorithms for thick and overlapped clusters in cytologic preparations.
Application to cervical smears,” Anal. Quant. Cytol. Histol., vol. 20,
no. 2, pp. 105–121, Apr. 1998.

[46] B. Roysam, H. Ancin, A. K. Bhattacharjya, M. A. Chisti, R. Seegal, and
J. N. Turner, “Algorithms for automated characterization of cell popu-
lations in thick specimens from 3-D confocal fluorescenc microscopy
data,” J. Microsc., vol. 173, no. 2, pp. 115–126, Feb. 1994.

[47] X. W. Wu, Y. D. Chen, B. R. Brooks, and Y. A. Su, “The local maximum
clustering method and its application in microarray gene expression data
analysis,” EURASIP J. Appl. Signal Process., vol. 2004, no. 1, pp. 53–63,
Jan. 1, 2004.

[48] L. Vincent and P. Soille, “Watersheds in digital spaces—an eff cient algo-
rithm based on immersion simulations,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[49] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas, “Efficientl
four-coloring planar graphs,” in Proc. 28th Annu. ACM Symp. Theory
Comput., 1996, pp. 571–575.

[50] D. Baggett, M. A. Nakaya, M. McAuliffe, T. P. Yamaguchi, and S. Lockett,
“Whole cell segmentation in solid tissue sections,” Cytometry A, vol. 67,
no. 2, pp. 137–143, Oct. 2005.

[51] C. S. Bjornsson, G. Lin, Y. Al-Kofahi, A. Narayanaswamy, K. L. Smith,
W. Shain, and B. Roysam, “Associative image analysis: a method for
automated quantificatio of 3D multi-parameter images of brain tissue,”
J. Neurosci. Methods, vol. 170, no. 1, pp. 165–178, May 15, 2008.

Yousef Al-Kofahi received the B.S degree in com-
puter engineering from Yarmouk University, Irbid,
Jordan, in 2003, and the M.S. degree in 2005 from
the Electrical, Computer and Systems Engineering
(ECSE) Department, Rensselaer Polytechnic Insti-
tute (RPI), Troy, NY, where he is currently work-
ing toward the Ph.D. degree in computer systems
engineering.

He is currently engaged in developing computer
vision and machine-learning algorithms for object-
level mapping of complex biological tissues from

2-D/3-D multispectral images. His current research interests include computer
vision, pattern recognition, and image processing/analysis.

Wiem Lassoued received the Master’s degree in sci-
ences from the University of Sciences of Tunis, Tunis,
Tunisia, in 2001.

She has been a Specialist Researcher C with Dr.
William’s Lee Laboratory, Abramson Cancer Cen-
ter, University of Pennsylvania, Philadelphia, PA, for
the past 5 years. Her current research interests include
development of computerized quantitative analysis of
histopatholgy tumor specimen based on image anal-
ysis, and look at different mechanisms involved to
develop cancer.

William Lee received the Ph.D. and M.D. degrees
from the University of Chicago, Chicago, IL, in 1974
and 1975, respectively.

He is currently an Associate Professor of medicine
with the Division of Hematology–Oncology, Univer-
sity of Pennsylvania, Philadelphia, PA, where he also
the Co-leader of the Tumor Biology Program in the
Abramson Cancer Center. He is an Associate Editor
of the Journal of Clinical Investigation. His current
research interests include development of methods
for quantitative analysis of human tumor histopathol-

ogy and the biological events and processes preserved in these specimens.

Badrinath Roysam (SM’89) received the B.Tech.
degree in electronics engineering from the Indian
Institute of Technology Madras, Chennai, India,
in 1984, and the M.S. and D.Sc. degrees from
Washington University, St. Louis, in 1987, and 1989,
respectively.

Since 1989, he has been with the Rensselaer Poly-
technic Institute, Troy, New York, where he is cur-
rently a Professor in the Electrical, Computer and
Systems Engineering Department. He is an Asso-
ciate Director of the Center for Subsurface Sensing

and Imaging Systems (CenSSIS)—a multiuniversity National Science Founda-
tion (NSF) sponsored engineering research center, and the Co-director of the
Rensselaer Center for Open Source Software. He also holds an appointment
in the Biomedical Engineering Department. His current research interests in-
clude 2-D, 3-D, and 4-D biomedical image analysis, biotechnology automation,
optical instrumentation, high-speed and real-time computing architectures, and
parallel algorithms.

Dr. Roysam is a Senior Member the Microscopy Society of America, the
International Society for Analytical Cytology, the Society for Neuroscience,
and the Association for Research in Vision and Ophthalmology. He is an As-
sociate Editor for the IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING and
the IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE.



 Page 1 

 

 

 

 

Cell-based Quantification of Molecular Biomarkers in Histopathology Specimens 

Yousef Al-Kofahi1‡, Wiem Lassoued2,5‡, Kedar Grama3, Sumit K. Nath1, Jianliang Zhu2, Ridha Oueslati5, 

Michael Feldman4, William M. F. Lee2, Badrinath Roysam1,3 

‡ These two authors have contributed equally to this work.  

1Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 

12180, USA. 

 2Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, 

USA. 

 3Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA. 

4Department of Pathology and Laboratory Medicine, Abramson Cancer Center, University of Pennsylvania, 

Philadelphia, PA 19104.  

5Unit of IMEC, University of Sciences Bizerte, Tunisia. 

 



 Page 2 

  

Correspondence: Badrinath Roysam, JEC 7010, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 

12180. Phone: 518 276 8067, Email: roysam@ecse.rpi.edu, and William M. F. Lee, Abramson Cancer 

Center, University of Pennsylvania, Philadelphia, PA 19104. Phone: (215) 898 0258, Email: 

leemingf@mail.upenn.edu. 

 

Running Title: Cell based biomarker quantification 

Key words:  

Digital histopathology,  

Molecular biomarkers,  

Cell typing, 

Multi-spectral Imaging 

Multiplexed Immunolabeling 

Automated Image Analysis   

 

Acknowledgments: Various portions of this work were supported by S-IDEA grant W81XWH-07-1-0325 

from the U.S. Army Breast Cancer Research Program, NIH grant R01 EB005157, NIH grant RO1 

CA135509, and by NSF grant EEC-9986821. Portions of this project were funded by a grant from the 

Pennsylvania Department of Health.  The Department specifically disclaims responsibility for any analysis, 

interpretations or conclusions. The authors thank Dr. Cliff Hoyt (CRi, Woburn, MA) for helpful discussions, 

and the staff at CRi Inc. for technical assistance.  



 Page 3 

ABSTRACT 

Aims: A computer-assisted technology for objective, cell-based quantification of molecular biomarkers in 

specified cell types in histopathology specimens to advance current visual estimation or pixel-level (rather 

than cell based) quantification methods.  

Methods: Tissue specimens are multiplex immunostained to reveal cell structures, cell type markers, and 

analytes, and imaged using multi-spectral microscopy. The image data are processed using novel software 

that automatically delineates and types each cell in the field, measures morphological features, and quantifies 

analytes in different sub-cellular compartments of specified cells.  

Results: The methodology was validated using cell blocks composed of differentially labeled cultured cells 

mixed in known proportions, and evaluated on human breast carcinoma specimens for quantifyng HER2, ER, 

PR, Ki67, p-ERK and p-S6. Automated cell-level analyses closely matched human assessments, but 

predictably differed from pixel-level analyses of the same images. 

Conclusions: Our method reveals the type, distribution, morphology, and biomarker state of each cell in the 

field, and allows multiple biomarkers to be quantified over specified cell-types, regardless of abundance. It is 

ideal for studying specimens from patients in clinical trials of targeted therapeutic agents, for investigating 

minority stromal cell subpopulations, and phenotypic characterization to personalize therapy and prognosis. 

 

INTRODUCTION 

      Histopathologic evaluation of tissue samples is indispensable for cancer diagnosis, classification, and 

management (1, 2), and is an important tool in animal-based research (3, 4). Thin tissue sections are stained 

with hematoxylin, eosin and/or other chemical stains to reveal cell and tissue structures. Antibody staining to 

reveal specific molecular biomarkers is increasingly used to improve cancer diagnosis and classification, 

establish prognosis, and determine therapy. Even as molecular biomarkers play a growing role, the scoring of 

stained specimens remains largely a visual and subjective process: Cells are coarsely scored as positive or 

negative or graded for degree of antigen staining, the percentage of positive cells is estimated visually, and 

overall scores are arbitrarily binned/scaled. This process requires considerable expertise and is susceptible to 

inter-observer variability, despite standardization efforts (5-13). The use of rough composite score scales 
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(e.g. 0, 1+, 2+, 3+ staining) is tacit acknowledgement of the inherent imprecision and subjectivity involved.  

     Recently, computer-automated methods have been developed to quantify antigen expression in tissue 

images (14-17), offering objectivity, reproducibility, and quantification on a continuous scale. Most operate 

by measuring the number of pixels stained for one or more antigen and quantifying co-localization of stains. 

They quantify at the level of individual pixels, groups of pixels or image regions however, and not at the 

level of individual cells, which are the fundamental units at which many biological processes occur. This is 

largely due to the lack of sufficiently reliable automated methods to segment (delineate) individual cells, 

identify subcellular compartments within cells, and quantify biomarkers within the subcellular regions. We 

set forth an approach that leverages recent advances in imaging, image analysis, and pattern theory to enable 

biomarkers to be analyzed and quantified on a cell-by-cell basis, providing additional data that cannot be 

obtained by pixel-level analysis and advancing prior efforts (18) (19). Our segmentation algorithms are 

capable of delineating sub-cellular compartments using image cues and geometric constraints. The 

subcellular compartment segmentations are consistently linked, enabling correct analysis in situations that 

challenge pixel-level analytical methods, e.g., multiple markers that are not co-localized but are present in 

the same cell. Importantly, our method explicitly identifies cell types, permitting selective measurement of 

biomarker expression in cell sub-populations regardless of their abundance
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RESEARCH DESIGN & METHODS 

      Tissue Staining: De-paraffinized 5 µM sections of formalin-fixed, paraffin-embedded human breast 

tissues were treated with citric acid (pH = 6) for 15min at 90ºC prior to staining. Antibodies used for 

immunostaining included monoclonal mouse anti-human estrogen receptor (ER), anti-human progesterone 

receptor (PR), anti-human Ki67, anti-epithelial membrane antigen (EMA), rabbit polyclonal anti-HER2 

(Dako, Carpenteria, CA), rabbit anti-phospho(p)-ERK, anti-phospho(p)-S6 (Cell Signaling, Danvers, MA), 

and mouse anti-multi cytokeratin (CK) monoclonal antibodies (Vector laboratories, Burlingame, CA). ER, 

PR, Ki67, p-ERK and HER2 were detected by immunohistochemistry (IHC) using biotinylated species-

specific secondary antibodies, avidin-linked horseradish peroxidase (HRP) (ABC Kit) and 3,3-

diaminobenzidine (DAB) or SG blue (Vector laboratories) HRP chromogen substrate. CK, EMA and p-S6 

immunostaining were detected by fluorescence using Zenon Alexa Fluor 488 mouse IgG1 labeling 

(Invitrogen, Carlsbad, CA), fluorescently labeled secondary antibodies (Invitrogen, Carlsbad, CA) or the 

ABC fluorescence detection kit. After immunostaining, slides were counterstained with hematoxylin. 

     Individual slides were stained with combinations of the above antibodies to reveal antigens that reported 

on cell compartments, cell type and molecular analytes in each slide. Multiplex staining protocols were 

developed to minimize or avoid the opportunity for nonspecific staining by secondary antibodies. Both 

chromogenic and fluorescent reporters were frequently used on the same slide, and only fluorochromes that 

could be resolved spectrally were used on the same slide. 

     Tissue imaging: A Nuance® multispectral camera (CRI Inc., Woburn, MA) on a Leica DMRA2 

epifluorescence microscope was used to record images at 400× magnification, 8 bits/pixel at 10nm 

wavelength intervals from 420-720 nm in both brightfield and fluorescent modes. Nuance software was used 

to spectrally unmix the data into distinct channels representing hematoxylin and the individual chromogens 

and fluorochroms based on the their pure spectra. 

     Figure 1 shows a sample breast cancer specimen. The brightfield image (panel A) reveals hematoxylin 

staining. Panel B shows the hematoxylin channel, unmixed using its spectral signature (Panel F), revealing 

cell nuclei. Such unmixed channels are ideal for automated segmentation because they are monochrome and 
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often contain only one type of object. Panel C shows the channel corresponding to CK fluorescent staining, 

which reveals the cytoplasmic domain of cells of epithelial origin. Panel D shows the channel corresponding 

to HER2 fluorescent staining, which reveals the plasma membrane of breast cancer cells expressing this 

biomarker. We use this image as a running example to illustrate the segmentation methods and process. 

      Image Analysis Overview: Our segmentation strategy focuses on cells whose nuclei are visible in the 

nuclear channel since they mark individual cells – these are segmented first. Second, the cytosolic boundaries 

of cells whose nuclei are detected are segmented based on markers and geometric constraints. The third step 

quantifies cell and nuclear morphologies, and measures biomarker expression over cellular compartments. 

Using these data, we identify cell types, classify cells as being positive/negative for antigens, and organize 

the measurements by cell type and sub-cellular compartment. 

     1. Automated Segmentation of Cell Nuclei: We used our fully automated segmentation algorithm (20) 

that improves upon the prior literature (21-35). Importantly, it is capable of automatic selection of parameter 

settings. It starts by binarizing the image using the Graph-Cuts method with automatic learning of foreground 

and background intensity profiles using minimum error thresholding (36, 37). Next, a multi-scale Laplacian 

of Gaussian (LoG) filter, with automatic and adaptive scale selection(20) is used to identify nuclear centers. 

These points are used to generate an initial segmentation (38) that is refined using a multi-label graph-cuts 

algorithm with alpha-expansions(39) and graph-coloring (40). Figure 2A shows sample automated 

segmentation results for the image in Figure 1 as red outlines overlaid on the nuclear channel displayed in 

grayscale. The green dots indicate nuclear centers whose locations and identifications (IDs) are used in 

subsequent steps. Given the importance of this step, the user is provided with graphical tools to inspect the 

results and correct any errors before proceeding to the next step.  

     2. Automated Delineation of Cytoplasmic Domains: This step generates the spatial mask for 

associating cytoplasmic markers to individual cells using a mix of cues from cytoplasmic and membrane 

markers and geometric constraints. For example, cytokeratins (CK) are found in the intra-cytoplasmic 

cytoskeleton of cells of epithelial origin (e.g., carcinoma cells in Figure 1C), so they indicate cytoplasmic 

domains of a selected cell population. Cytoplasmic markers often highlight connected multi-cellular clusters 

that must be sub-delineated into individual cells to permit cell-by-cell analysis. The cues for this sub-
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delineation vary. Sometimes, it is possible to highlight cell boundaries by staining for a membrane-associated 

antigen, e.g., E-cadherin or EMA. Some analytes also can highlight membranes of cells, e.g. HER2 (Figure 

2D). However, membrane labeling is often unreliable: HER2 is not always over expressed, and E-cadherin 

expression can be lost in some cancers. Even when good cytoplasmic and membrane-bound markers are 

available, some ambiguities arise due to the fact that histopathology slides are sections of three-dimensional 

(3-D) specimens, and the sectioning plane cannot be planned accurately. For instance, the membranes of 

cells may be visible but not the nuclei, or the membrane signal can appear over a nucleus, appearing to cut 

across it. Finally, cells within a sample can show a variable degree of staining. Overall, cytoplasmic 

segmentation algorithms must be capable of coping with variable cues. Our strategy is to avoid direct 

segmentation of the cytoplasmic/membrane channels. Instead, we leverage the validated nuclear 

segmentations and build an adaptive algorithm that exploits cues in the cytoplasmic and/or membrane 

channels, when they are available, and that defaults to geometric constraints when they are inadequate. It 

automatically switches between two modes (defined below) on a cell-by-cell basis.  

     Mode 0: This applies to cells with detectable cytoplasmic and/or membrane marker. The cytoplasmic 

channel pixels  are automatically and adaptively binarized to separate the foreground and 

background, using the Graph-Cuts algorithm (36, 37). Morphological opening and closing operators (radius 

= 3 pixels) are used to fill holes. If the membrane channel, IM (x, y)  is available, the magnitude of its 

smoothed intensity gradient, Gσ (x, y) = ∇σ IM (x, y)  is computed by convolving  with the 

derivative of a Gaussian with σ = 1.25  pixels (fixed for a given magnification). If the membrane channel is 

unavailable, we compute Gσ (x, y) = ∇σ IC (x, y)  instead. The cues from the cytoplasmic and membrane 

channels are integrated with geometric distances by computing a gradient-enhanced distance map , 

with respect to the segmented nuclei. This is used to compare the cue-adjusted proximity of each pixel to 

nuclei. If  denotes the Euclidean distance between neighboring foreground pixels  and 

, the adjusted distance between them is d(i, j) × Gσ (xi , yi ) −Gσ (x j , yj ) . The adjusted 

distance between non-neighboring points  and  is weighted by the length of the 



 Page 8 

shortest path (with 8-neighbor connectivity) connecting them. The value at each cytoplasmic foreground 

point in  is set to the minimum of all the adjusted distances from  to all the nuclear 

boundary points that are connected by a path over foreground points. Using the nuclei as the initial markers, 

a marker-controlled watershed transform (41) is computed on . This produces a reliable 

segmentation of the cytoplasmic foreground into sub-regions, with one cytoplasmic region per segmented 

nucleus. Figure 2B shows sample cell segmentations of CK+ cells using Mode 0 using the gradient 

information Gσ (x, y)  from the membrane channel.  Figures (3, 5, 6 and supplementary Figure 2) 

exemplify segmentations without the benefit of the membrane signal.  

     Mode 1: This is a geometric estimation that is invoked for cells for which cytoplasmic and membrane 

labels are unavailable (e.g., stromal cells that are CK-). The traditional geometric approach based on Voronoi 

diagrams(42, 43) produces unacceptably coarse polygonal approximations, so we use the Hamilton-Jacobi 

Generalized Voronoi Diagram (HJ-GVD) (44) that uses the Euclidean distance from segmented nuclear 

boundaries instead of their centroids to produce more refined estimates. We impose a radius constraint rmax  

on the HJ-GVD to prevent unrealistically large cell domain estimates. Figure 2C shows sample results for 

the HER2 example using pixels. The estimated cell boundaries are overlaid on the Euclidean 

distance map . Although these geometric estimates do not reflect the cellular reality (the structures 

are unobservable), they are helpful for approximately associating extranuclear markers to cells when the 

limitations of immunostaining do not permit additional labels for cytoplasmic & membrane markers.  

     3. Morphological Measurements of Cells: From the nuclear and cytoplasmic segmentations, we compute 

cell features including locations, areas, shape factors, boundary curvatures, convexity, eccentricity, radius 

variation, orientation, and various texture measures (average intensity, intensity variation, skew of intensity 

distribution, energy of intensity distribution, entropy of intensity distribution, interior gradient, and ratios of 

intensity values (e.g., max/min)) (45). Not all features are needed for a given analysis, and the user can 

choose an appropriate subset. The cytoplasmic segmentation step produces one cytoplasmic domain per 

segmented nucleus, so the nuclear identifiers (IDs) are used for tabulating nuclear and cytoplasmic 

measurements.  
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     4. Biomarker Measurements of Cells Next, molecular biomarkers are quantified by measuring their 

distribution over cellular regions of interest (masks) defined by segmentation. Figure 2E shows a close-up 

view of these regions for an individual cell. The red outline shows the intranuclear compartment, the light 

blue contours delineate the intra-cytoplasmic compartment, and the orange contour runs parallel to the cell 

membrane outline (blue) separated by a fixed distance (5 pixels).   

     Quantifying Nuclear Biomarkers: Directly summing the analyte signal over intranuclear compartments 

is naïve since it does not correct for background fluorescence. Even when they appear dim, background 

pixels can add up to a significant sum over a region. To address this problem, we first perform an automatic 

2 or 3-level segmentation of the analyte channel(46). When the contrast between the analyte-positive pixels 

and analyte-negative pixels is high, a 2-level binarization separates the bright foreground from definite 

background pixels. When the analyte exhibits an intermediate background, a 3-level binarization (e.g., 

Figure 4) segregates pixels into bright foreground, intermediate background, and dark background. Only the 

bright foreground pixels are used for analyte association. Supplementary Figure 3 illustrates these steps for 

quantifying ER in a breast cancer specimen. Panel D shows the 3-level binarization for background 

correction. 

     Quantifying Cytoplasmic Markers: Integration of markers over the cytoplasmic region proceeds as with 

nuclei – the background-corrected analyte signal is integrated over the cytoplasmic region of interest. In 

Figure 2E, the cytoplasmic region of integration is enclosed by the blue outlines, but excluding the intra-

nuclear region. 

     Quantifying Plasma Membrane Bound Markers: This computation must cope with the possibility of 

an unreliable membrane label that does not clearly and completely define the cytoplasmic domain of each 

cell. Happily, our cytoplasmic segmentation is designed to produce closed contours representing the best-

possible estimates of cell membrane locations based on available cues. When a user determines that the 

membrane signal is sufficiently reliable, membrane-bound analytes can be integrated within a narrow strip 

(typ. 5 pixels wide) of the segmented membrane. When the locations of cytoplasm and plasma membrane 

markers are superimposed or extensively overlap, the integration is carried out over the entire cell domain, 

with background correction. The resulting biomarker measurements must be interpreted with care, since our 
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images represent planar projections of sub-cellular compartments with finite thickness. When assigning 

analyte expression to sub-cellular compartments, one must acknowledge that these two compartments cannot 

be perfectly distinguished or separated in the images being analyzed. Nevertheless, these measurements are 

adequate from the standpoint of labeling cells as being positive/negative for membrane bound antigens, and 

for statistical analysis. 

     5. Cell Type Identification: This step identifies whether a cell is of a specified type based on its 

morphological and associative features. We use a supervised approach, where a training set (containing 

examples of both classes from one or more images) is indicated by the user, from which a Bayesian classifier 

is constructed. Figure 2D illustrates cell classification results for the example image shown in Figure 1, 

based on the cytokeratin signal. Yellow dots represent cells that are CK+ and HER2+, and white dots 

represent other cells. 

 

EXPERIMENTAL RESULTS 

     FARSIGHT (www.farsight-toolkit.org) was written using standard software tools (C++, ITK, VTK, QT) 

and allows a user to perform automated segmentation, view & edit the results, compute morphological & 

associative features, classify cells, and export the results to spreadsheets. It is both free and open source. 

Each row of the output corresponds to one numbered cell in the image. The software was validated in two 

ways. First, its results were compared against determinations made by a human expert. Another validation 

was based on in vitro cultured cells, labeled with different fluorochromes and mixed in different ratios to 

create cell blocks from which slides were cut for fluorescence imaging and analysis.  Specifically, cultured 

cells were labeled with the membrane dye, PKH26, or with a combination of PKH26 and PKH67. The 

PKH26 cells and PKH26/PKH67 cells were mixed in different ratios (10:0, 9:1, 2:1, 1:1, 1:2, 1:9 and 0:10), 

fixed and frozen in OCT embedding media. Slides cut from these cell blocks were stained with DAPI to 

reveal nuclei and membrane proteins PKH26 and PKH67. The details of the protocols and results are in 

Supplement A. Ten images (400X) were taken of slides from each block and processed by FARSIGHT to 

segment cells, classify them as PKH67-negative or PKH67-positive, and compute the ratio of the two cell 

populations. The results were in concordance with a human expert scoring (Table A.1). The averages of cell 
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proportions determined by FARSIGHT closely approximated the known truth (Supplementary Figure A.1). 

We then proceeded to evaluate FARSIGHT for human breast histopathology samples. 

     Cell membrane Analyte (HER2): Figure 2 shows our analysis of the image in Figure 1. The histogram 

in Figure 2F shows the distribution of HER2 in the cells. he cut-off value was 12.6 grayscale units, at which 

98.5% of the tumor cells (CK+ cells) are HER2+. These data concord with an expert human reading of 99%. 

In some cases, HER2 staining is not also usable for cell boundary determination (e.g. HER2 staining overlays 

cell nuclei or is extremely dark and thick (Supplementary Figure 1), so the cell boundaries were estimated 

geometrically (Mode 1). 

     Nuclear Analytes (ER, PR, Ki67): We applied our methodology to specimens stained for 3 common 

nuclear-bound markers, ER, PR and Ki67. Supplementary Figure 2 shows the detailed steps for the ER case 

– the steps were identical for PR and Ki67. Figure 3 shows the results for breast cancer specimens stained 

for ER (A, B), PR (C, D), and Ki76 (E, F), respectively. As a crosscheck, we computed the ratios of nuclear 

to cytoplasmic levels of the analytes for every cell. Histograms of these ratios (panels B, D, F) show that 

these analytes are strongly nuclear bound, as expected for antigens that are located in nuclei. The 

automatically determined percentages of ER+, PR+ and Ki67+ cells were 39%, 40% and 27% of the CK+ 

cells, compared to expert determined percentages of 38%, 39% and 26%, respectively. For comparison, 

pixel-level analysis to determine the percentage of hematoxylin+ pixels (the image area occupied by nuclei) 

that were also ER+, PR+ or Ki67+ yielded 17.3%, 28.5% and 14.5%, respectively. Clearly, area 

measurements do not reflect cell numbers. 

     Figure 4 illustrates analysis of chosen sub-populations of cells. To measure cell proliferation and its 

relationship to activity of the Raf-MEK-ERK signaling pathway, a human breast carcinoma was 

immunostained for Ki67, p-ERK and CK. CK staining reveals a cluster of carcinoma cells to the right, but 

these constitute a minority of the cells; the majority are lymphocytes within a reactive lymphoid nodule.  

Ki67 immunostaining showed that 34.6% of all cells were proliferating. For comparison, pixel-level analysis 

showed that 16.7% of hematoxylin+ pixels were Ki67+. Only 2.1% (2 of 96) of carcinoma cells are Ki67+, 

while 37.8% (414 of 1094 stromal cells) are Ki67+. Thus the total number or percentage of Ki67+ cells does 

not accurately report tumour cell proliferative activity. It demonstrates that a cell-based method with the 
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ability to type cells as tumour or stromal prior to analyte quantification is important for characterizing human 

tumours, where the cellular composition is always heterogeneous, and tumour cells may not predominate. 

Further analysis to examine the correlation between Raf-MEK-ERK signaling and proliferation showed a 

high coefficient (R = 0.89) between p-ERK and Ki67 expression in cells (Figure 4E). It suggests that ERK 

activation and proliferation may be linked events among the cells in this image. This is expected, since the 

majority of proliferating cells are lymphocytes, and ERK activation has been shown to accompany mitogenic 

activation of lymphocytes in vitro (47). Due to the low frequency of Ki67 and p-ERK positivity among CK+ 

cells in this image, little can be learned about concurrence of ERK activation and proliferation in carcinoma 

cells from this image (Figure 4F).  

      To examine the relationship between ERK activation and proliferation in breast cancer cells, another 

region of the same tumour (Figure 5A-C) and a region of a second, similarly stained tumour (Figure 5G-I) 

were analyzed. In both fields, tumor cells are the majority, and a significant fraction are Ki67+ (10% for 

tumour 1, 7.5% for tumour 2). Scatter plots of p-ERK and Ki67 expression in individual cells reveal that the 

correlation between p-ERK and Ki67 staining is less among the CK+ carcinoma cells of tumour 1 (R = 0.59) 

and tumour 2 (R = 0.29) than among the reactive lymphocytes in tumour 1 (Figure 4, R= 0.89). Based on 

these images, the link between ERK activation and cell proliferation appears weaker in the tumour cells than 

in the reactive lymphocytes, illustrating the utility of specific cell-level analysis as a research tool. 

     The ability of our method to separate each cell into nuclear and extranuclear compartments is valuable. 

Figure 6 shows a breast tumour that was stained with antibodies to p-S6 (the activated form of ribosomal 

protein S6), CK and EMA, all by immunofluorescence, and counterstained with hematoxylin. Figure 6D 

shows cell segmentation and classification results with yellow contours outlining the cytoplasmic boundaries 

of CK+ cells determined using the CK and EMA channels jointly. The sub-population of CK+ cells that are 

p-S6+ is in the minority (11%) in this tumour (for comparison, pixel based analysis showed that 8.9% of 

CK+ pixels are p-S6+). Visual examination of the p-S6+ cells shows that p-S6 staining, as expected, was 

predominantly cytoplasmic. This was confirmed by plotting a histogram of the extra-nuclear to nuclear ratio 

of p-S6 signal in cells that expressed this antigen (Figure 6F), which showed that only 10% of p-S6 signal 

was nuclear. This small amount of “nuclear” p-S6 may be explained by the fact that the image represents a 
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planar projection of a tumour section that is 5µm thick; p-S6 staining in cell cytoplasm situated above or 

below nuclei in these sections would register as nuclear. 

 

DISCUSSION & CONCLUSIONS 

     The “histocytometric” analyses performed by FARSIGHT on the images shown demonstrate the 

practicality and value of quantifying molecular analytes on a cellular scale with cell-type and sub-cellular 

compartment specificity. Although these studies focused on breast cancer, our methodology and tools are 

applicable to other cancers and conditions. Our approach requires more extensive immunostaining and 

sophisticated imaging compared to traditional visual histopathology, but offers important benefits. It reveals 

the type, distribution, intrinsic characteristics and biomarker state of each cell in its tissue context. It allows 

multiple biomarkers to be quantified selectively over specified cell-types, regardless of their abundance. Our 

efforts were focused on quantifying analytes in tumor cells, but stromal cells (endothelial cells, fibroblasts, 

lymphocytes, macrophages, etc.) are omnipresent in tumors and gaining attention for their contributions to 

malignant progression and behavior (48) (49). The ability of histocytometry to specify the cell-type for 

analysis makes it a sensitive and specific tool for investigating minority stromal cell subpopulations, whose 

attributes would otherwise be overshadowed by more abundant cell types. 

     Our cell-based method shares some advantages with pixel-level analysis, such as objectivity, 

reproducibility, and ability to quantify on a continuous scale. However, by using the cell as the unit of 

analysis, it generates additional and potentially complementary measurements expressible in terms of cell 

counts and cell types. Such measurements are unaffected by the area occupied by cells and other tissue 

structures in the image. While the two types of measurements can be correlated for some samples, they can 

differ greatly for others, as shown by our examples. For analysis of histopathology specimens, both methods 

are usable diagnostically, but we believe that event reporting by cell number or percentage is biologically 

more informative, as reflected in the fact that it is the preferred form of reporting for many in vitro cellular 

studies. Our software system makes it possible to generate these reports. 

     Histocytometry correctly assigns analytes to appropriate subcellular locations within one cell (e.g. a 

nuclear analyte and a cytoplasmic analyte) to the same unit. Results so organized have obvious benefits, 
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particularly when interrogating tissues for biological processes and events that occur, or are regulated, at the 

level of individual cells but involve different subcellular compartments. This feature of FARSIGHT analysis 

also brings the ability to examine and quantify analytes in different compartments of cells. This is an 

advantage when studying analytes whose subcellular location, by itself, is informative about activity. For 

example, the transcription factor, NFκB, is kept transcriptionally inactive when it is constrained in the 

cytoplasm through binding to its inhibitor, IκB. NFκB becomes active upon its translocation to the nucleus 

following stimuli that induce release from and degradation of IκB (50). An extension of this is the study of 

yet other analytes that produce different effects, depending on whether they are localized to the cytoplasm or 

nucleus. Finally, by providing analyte data for each cell in an image rather than one result for the image as a 

whole, FARSIGHT analysis can reveal population characteristics, such as analyte range, distribution, and 

variance among cells that can be additionally informative. Histocytometry can provide information similar to 

that provided by flow cytometry with the added benefit of preserving tissue architecture, which allows 

concurrent examination of morphological features and quantification of spatial relationships and distributions 

not possible with the dissociated cells used for flow cytometry. 

     We developed our multiplex immunostaining protocols for the study of formalin-fixed, paraffin-

embedded (FFPE) histopathology specimens. This allows histocytometric analysis to be performed on the 

tissue material most commonly available from cancer patients and most often stored in pathology archives. 

However, frozen and other forms of preserved tissues are also suitable for this type of analysis; their study 

only requires development of appropriate immunostaining protocols. These protocols have involved 

immunostaining for four or more antigens on the same slide to study a single analyte. This level of 

complexity stems from the need to stain for cell type, subcellular compartments, and analyte antigens on the 

same slide. Some of this complexity may be reduced by algorithms for direct multi-spectral identification of 

tumor cells and tumor areas in slides stained only with hematoxylin and eosin (H&E). For tumor cell 

analysis, computer generated “tumor masks” may eliminate the need to immunostain for cell type and 

compartment antigens. Combining use of tumor masks with cell segmentation based on geometric 

algorithms, histocytometry analysis may be performed on slides stained only for analyte and H&E, such as 

breast cancer specimens stained for ER, PR and HER2 in hospital pathology laboratories.  While the utility 
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of developing methods for histocytometric analysis of simply stained slides is primarily clinical, expanding 

the current limits of immunostain multiplexing will make histocytometry an even more potent instrument for 

biology research. FARSIGHT can also be applied to H&E stained sections, but the caveat rests with the 

fluorescence of eosin that must be properly accounted for in the spectral unmixing. It will allow study of 

numerous analytes on the same slide. Accompanied by FARSIGHT cell-based quantification of their 

expression, this will enable examination of complex patterns of signaling pathway activity and other 

molecular events in cells in authentic tissue context. Although our examples did not show analysis of 

multiple cell types, the system itself is capable of such analysis and we expect to report validation of this 

capability in subsequent papers. As part of our effort to hasten development and advancement of this 

histopathology analysis platform, FARSIGHT has been made available as a free & open source software 

system (www.farsight-toolkit.org). In the future, we expect this system to be adapted to automated analysis 

of larger batches of specimens, that may be multiplex stained by automated systems, and whole-slide 

scanning. 
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FIGURE LEGENDS 

Figure 1: Multiplex stained human breast cancer specimen. A human breast cancer was stained for HER2 

by immunofluorescence using Texas red and for cytokeratin by immunofluorescence using Alexa-488 and 

counterstained with hematoxylin. The slide was imaged multi-spectrally in absorption and fluorescence 

modes, and the results unmixed to yield non-overlapping channels. (A) Brightfield image showing 

hematoxylin staining. (B) Unmixed channel containing only cell nuclei, corresponding to the hematoxylin 

spectral signature. (C) Unmixed channel for fluorescently-stained cytokeratin. (D) Unmixed channel 

corresponding to fluorescently stained HER2. (E) Composite 3-color image with nuclei (red), cytokeratin 

(green), and HER2 (blue). (F) Spectral signatures used for the unmixing computations, displayed using blue 

for hematoxylin (nuclei), green for Alexa-488 (cytokeratin), and red for Texas Red (HER2). 

 

Figure 2: Automated image analysis steps for the specimen in Figure 1. (A) Automatic nuclear 

segmentation (red outlines) of the nuclear channel. (B) Estimated cytoplasmic domains for cytokeratin+ cells 

for the boxed region in panel D overlaid on the gradient enhanced distance map (Mode 0). (C) Geometrically 

estimated cytoplasmic domains for stromal cells in the same region overlaid on the underlying dominance 

map (Mode 1). (D) Composite cell segmentation & classification results, with yellow dots indicating cells 

that are cytokeratin+ and HER2+, and white dots indicating other cells. (E) Close-up illustrating regions of 

interest used to quantify HER2. (F) Histogram summary showing the cutoff point for declaring cells HER2+. 

 

Figure 3: Examples showing analysis of breast cancer specimens stained for three nuclear-bound 

biomarkers. Breast cancer slides were immunostained for estrogen receptor (A, B), progesterone receptor 

(C,D), or Ki67 (E, F) plus cytokeratin and counterstained with hematoxylin. Images were captured, and 

nuclear and whole cell segmentation was performed, with yellow dots indicating the nuclei positive for the 

respective analytes (A, C, E). Analyte was quantified in the nuclear and extranuclear compartments of each 

cell, and histograms of the ratios of nuclear to extranuclear analyte levels in all positive cells are shown (B, 

D, F). 
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Figure 4: Duplex analysis of pERK and Ki67 immunostaining in lymphoid cells in a human breast 

carcinoma.  A section of a breast tumor was stained sequentially with anti-pERK (SG blue), anti-Ki67 

(DAB) and anti-CK (Alexa-488) antibodies, followed by hematoxylin staining, multispectral imaging (400X) 

and cytometric analysis. The brightfield image of a lymphoid nodule in the tumor is shown (A) along with 

the unmixed channels for DAB (Ki67) (B), SG blue (p-ERK) (C) and Alexa-488 (cytokeratin) (D). Scatter 

plots of p-ERK (X-axis) and Ki67 (Y-axis) staining intensity are shown for cells in the lymphoid nodule (E) 

and for tumor cells (F), with each dot representing one cell. 

 

Figure 5: Duplex analysis of pERK and Ki67 immunostaining in human breast carcinoma cells. 

Sections of two different breast tumors were stained and analyzed as described for Figure 5. Brightfield 

images of the two different tumors are shown (A, G), with the unmixed channels for DAB (Ki67) (B,H) and 

SG blue (p-ERK) (C,I). Composite images showing whole cell segmentation of the tumor (cytokeratin+) 

cells are shown (D,J). Scatter plots of p-ERK (X-axis) and Ki67 (Y-axis) staining intensity are shown for 

tumor cells (E.K) and for non-tumor (stromal) cells in (F,L) with each dot representing one cell. 

 

Figure 6: Analysis of phospho-S6 immunostaining in a human breast cancer. A section of a breast tumor 

was stained with anti-p-S6 (Alexa-488), anti-EMA (Alexa-594) and anti-CK (Alexa-555), followed by 

hematoxylin staining, multispectral imaging (400X) and cytometric analysis. The brightfield image is shown 

(A) along with unmixed channels for Alexa-555 (CK) (B) and Alexa-594 (EMA) (C). Composite images of 

p-S6 analyte staining along with segmented whole tumor cells are shown (D; E shows an enlargement of the 

boxed area in D). In each cell, analyte in the nuclear and extranuclear compartment was quantified. Ratios of 

extranuclear to nuclear analyte were calculated for each positive tumor cell and their distribution is shown 

(F). 
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Supplementary Figure 1: Illustrating application of the proposed methods to a breast cancer specimen 

labeled for HER2 and cell nuclei only. The specimen was stained for HER2 by IHC using DAB and 

counterstained with hematoxylin. (A) Brightfield image of slide showing HER2 staining in DAB (brown 

chromogen) counterstained with hematoxylin  (B) Composite 2-color image with red corresponding to the 

nuclear channel, and light blue corresponding to the HER2 channel (C) Combined segmentation and 

classification results overlaid on the composite image shown in panel B. The bright blue outlines indicate cell 

boundaries that were estimated using a fixed distance of 10 pixels surrounding cell nuclei, using the method 

described as Case III. Yellow and pink dots represent HER2+ and HER2- cells respectively. 

 

Supplementary Figure 2: Application of the proposed method to a breast cancer specimen labeled for 

Estrogen Receptor (ER) by IHC using DAB, and for CK by IF using Alexa-488 and counterstained with 

hematoxylin. (A) Brightfield image.  (B) Composite 3-color image after spectral unmixing with red, green, 

and blue corresponding to the nuclear, cytokeratin and ER channels respectively.  (C) The raw ER channel. 

(D) Three-level binarization of the ER channel for background correction. (E) Combined segmentation and 

classification results overlaid on the composite image in panel B. Yellow and pink dots indicate ER+ and 

ER- cells. (F) Histogram of the background-corrected intra-nuclear ER signal in cell nuclei. The ER density 

cut-off value between ER- and ER+ is 55.2 and 39% of the tumor cells (CK+) are identified as ER+. This 

percentage is very close to the manual estimate, which is 38%. 
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Figure 1: Multiplex stained human breast cancer specimen. A human breast cancer was stained for HER2 
by immunofluorescence using Texas red and for cyt okeratin by im munofluorescence using Alexa -488 and 
counterstained with hem atoxylin. The slide was im aged m ulti-spectrally in absorption and fluorescence 
modes, and the results unm ixed to yield non -overlapping channels. (A) Br ightfield im age showing 
hematoxylin staining. (B) Unm ixed channel containi ng only cell nuclei, corresponding to the hem atoxylin 
spectral signature. (C) Unm ixed channel for fluores cently-stained cytokeratin. (D ) U nmixed channel 
corresponding to fluorescently stained HER2. (E) Com posite 3-color im age with nuclei (red), cytokeratin 
(green), and HER2 (blue). (F) Spectral signatures used  for the unm ixing computations, displayed using blue 
for hematoxylin (nuclei), green for Alexa-488 (cytokeratin), and red for Texas Red (HER2). 
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Figure 2: Automated image analysis steps for the specimen in Figure 1. (A ) A utomatic nuclear 
segmentation (red outlines) of the nuclear channel. (B) Estimated cytoplasmic domains for cytokeratin+ cells 
for the boxed region in panel D overlaid on the gradient enhanced distance map (Mode 0). (C) Geometrically 
estimated cytoplasmic domains for strom al cells in  the sam e region overlaid on the underlying dom inance 
map (Mode 1). (D) Com posite cell segm entation & classification results, w ith yellow dots indicating cells 
that are cytokeratin+ and H ER2+, and w hite dots indi cating other cells . (E) Close-up illustrating regions of 
interest used to quantify HER2. (F) Histogram summary showing the cutoff point for declaring cells HER2+. 
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Figure 3: Examples showing analysis of breast cancer specimens stained for three nuclear-bound 
biomarkers. Breast cancer slides w ere immunostained for estrogen receptor (A , B), progesterone receptor 
(C,D), or Ki67 (E, F) plus cytokeratin and counterst ained with hem atoxylin. Im ages were captured, and 
nuclear and w hole cell segm entation was performed, with yellow dots indicating the nuclei positive for the 
respective analytes (A , C, E). A nalyte was quantified in  the nuclear and extranuclear com partments of each 
cell, and histograms of the ratios of nuclear to extranuc lear analyte levels in all positive cells are show n (B, 
D, F).   
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Figure 4: Duplex analysis of pERK and Ki67 immunostaining in lymphoid cells in a human breast 
carcinoma.  A section of a breast tum or was stained seque ntially w ith anti-pE RK (SG  blue), anti-K i67 
(DAB) and anti-CK (Alexa-488) antibodies, followed by hematoxylin staining, multispectral imaging (400X) 
and cytometric analysis. The brightfield im age of a lymphoid nodule in the tum or is shown (A) along with 
the unmixed channels for DAB (Ki67)  (B), SG blue (p-ERK ) (C) and Alexa-488 (cytokeratin) (D). Scatter 
plots of p-ERK (X-axis) and Ki67 (Y-a xis) staining intensity are shown for cells in the lym phoid nodule (E) 
and for tumor cells (F), with each dot representing one cell. 
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Figure 5: Duplex analysis of pERK and Ki67 immunostaining in human breast carcinoma cells. 
Sections of two different breast tumors were stained and analyzed as described for Figure 5. Brightfield 
images of the two different tumors are shown (A, G), with the unmixed channels for DAB (Ki67) (B,H) and 
SG blue (p-ERK) (C,I). Composite images showing whole cell segmentation of the tumor (cytokeratin+) 
cells are shown (D,J). Scatter plots of p-ERK (X-axis) and Ki67 (Y-axis) staining intensity are shown for 
tumor cells (E.K) and for non-tumor (stromal) cells in (F,L) with each dot representing one cell.. 
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Figure 6: Analysis of phospho-S6 immunostaining in a human breast cancer. A section of a breast tumor 
was stained with anti-p-S6 (Alexa-488), anti-EMA (Alexa-594) and anti-CK (Alexa-555), followed by 
hematoxylin staining, multispectral imaging (400X) and cytometric analysis. The brightfield image is shown 
(A) along with unmixed channels for Alexa-555 (CK) (B) and Alexa-594 (EMA) (C). Composite images of 
p-S6 analyte staining along with segmented whole tumor cells are shown (D; E shows an enlargement of the 
boxed area in D). In each cell, analyte in the nuclear and extranuclear compartment was quantified. Ratios of 
extranuclear to nuclear analyte were calculated for each positive tumor cell and their distribution is shown 
(F). 
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Supplementary Figure 1: Illustrating application of the proposed methods to a breast cancer specimen 
labeled for HER2 and cell nuclei only. The specim en was stained for HER2 by IHC using DAB and 
counterstained with hem atoxylin. (A ) Brightfield im age of slide show ing HER2 staining in DAB (brown 
chromogen) counterstained with hem atoxylin  (B) Co mposite 2-color im age with  red corresponding to the 
nuclear channel, and light blue corresponding to the HER2 channel (C) Com bined segm entation and 
classification results overlaid on the composite image shown in panel B. The bright blue outlines indicate cell 
boundaries that were estim ated using a fixed distan ce of 10 pixels su rrounding cell nuclei, using the m ethod 
described as Case III. Yellow and pink dots represent HER2+ and HER2- cells respectively. 
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Supplementary Figure 2: Application of the proposed m ethod to  a breast cancer specim en labeled for 
Estrogen Receptor (ER) by IH C using D AB, and for CK by IF using A lexa-488 and counterstained w ith 
hematoxylin. (A) Brightfield im age.  (B) Com posite 3-color image after spectral unm ixing with red, green, 
and blue corresponding to the nuclear, cytokeratin and ER  channels respectively.  (C) The raw ER channel. 
(D) Three-level binarization of the ER channel for background correction. (E) Combined segmentation and 
classification results overlaid on the com posite image in panel B . Yellow and pink dots indicate ER+ and 
ER- cells. (F) Histogram  of the background-corrected in tra-nuclear ER signal in cell nuclei. The ER density 
cut-off value between ER- and ER+ is 55.2 and 39%  of the tumor cells (C K+) are identified as E R+. This 
percentage is very close to the manual estimate, which is 38%.   
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SUPPLEMENT A: DETAILS OF IN VITRO VALIDATION EXPERIMENT 
 
     In vitro specimens used for validation purposes: We specifically prepared a set of slides for the purpose 

of validating the performance of our integrated m ethodology. For this, K1735 murine melanoma tumor cells 

were cultured in com plete m edia D MEM w ith 10% FBS and 10%  penicillin /streptom ycin. A fter 

trypsinization, half of the cells w ere labeled w ith plasma membrane dye PKH26 while the other half of the 

cells were labeled with PKH26 and PKH67 (Sigma Aldrich, Allentown, PA) according to instructions. Cells 

from the two labeling reactions were washed, counted and mixed together in different ratios: 0%, 10%, 33 %, 

50%, 66%, 90% and 100%. Cells in the different mixtures were fixed in 2% paraformaldehyde for 2 minutes 

and centrifuged. The cell pellets were snap frozen in liquid nitrogen, and 10 μM sections were cut from the 

frozen blocks. Sections were stained with 4’, 6’-diamidino-2-phenylindole (DAPI) to reveal nuclei. 

     Stained slides were im aged at appropriate wavele ngths to reveal nuclei, PKH26 staining and PKH67 

staining (Figure A.1, panel A-E, respectively). Im ages of the pur e cases (10:0, and 0:10)  are not shown. In 

these images, the nuclear channel (D API) is displayed in  red, the PKH26 channel is displayed in blue, and 

PKH67 channel in green. Ten im ages (400X ) w ere taken of slides from  each block and processed by 

FARSIGHT to segm ent cells and their nuclei, classi fy the segm ented cells as PK H67-negative or PK H67-

positive, and com pute the ratio of the tw o cell populati ons. The interm ediate im age analysis steps are not 

shown, but only the final cell classification results are displayed by color coding the nuclear segm entation 

seeds. PKH26+ cells are indicated as red dots and the PKH67+ cells are shown as yellow dots. A plot of the 

measured proportion in every im age (Y-axis) versus the true proportion of PKH67 -negative cells (X-axis) is 

shown in panel F and dem onstrates that the averages  of cell proportions determ ined by FARSIGH T closely 

approximate the known truth. A com parison between the autom atically found average percentages of 

positive cells to the corresponding ground truths for a set of sam ple im ages is provided in Table A.1. In 

interpreting these data, one must expect some natural variability from one image to the next, hence the reason 

for analyzing 10 images for each ratio. 
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Table A.1: Summary of validation results comparing automated classification results against the 

results produced by a human expert for several of the examples shown in this paper. 
 

Percentage of positive cells Image 
Manual 

Average (%) 
Automated 

Average (%) 
In_vitro 0% 0 2.4 
In_vitro 10% 10 11.1 
In_vitro 33% 33 32.8 
In_vitro 50% 50 53.7 
In_vitro 66% 66 66.9 
In_vitro 90% 90 86.4 
In_vitro 100% 100 98.0 
In_vivo ER 38 39 
In_vivo PR 39 40 
In_vivo Ki67 26 27 
In_vivo HER2 99% 98.5 
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Supplementary Figure A.1: Validation using in vitro labeled cultured cell blocks. (A–E) Sample images 
of slices of  “blocks” of cultured cells labeled in vitro with PKH26, or with a com bination of PKH26 and 
PKH67 mixed in ratios (9:1, 2:1, 1:1, 1:2, &  1:9). Im ages of the pure cases (10:0,  and 0:10) are not shown. 
The nuclear channel (DAPI) is displayed in red, the PKH26 channel is displayed in blue, and PKH67 channel 
in green. The final cell classification results are disp layed by color-coding the nuclear segm entation seeds. 
PKH26+ cells are indicated as red dots and the PKH67+  cells are shown as yellow dots. (F) A plot of the 
measured proportion (Y -axis) versus the true proporti on of PKH67-negative cells (X -axis) in every im age 
demonstrates that the averages of cell proportions de termined by FARSIGHT very closely approxim ate the 
known truth, and the absence of systematic bias. 
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